
artima

Scott Meyers

Presentation Materials

Embedded Environment

Effective C++
in an

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment Version 3

Artima Press is an imprint of Artima, Inc.
2070 N Broadway #305, Walnut Creek, California 94597

Copyright © 2010-2015 Scott Meyers. All rights reserved.

First version published April 26, 2010
Second version published October 4, 2012
This version published April 2, 2015
Produced in the United States of America

Cover photo by Stephan Jockel. Used with permission.

No part of this publication may be reproduced, modified, distributed, stored in a re-
trieval system, republished, displayed, or performed, for commercial or noncommer-
cial purposes or for compensation of any kind without prior written permission from
Artima, Inc.

This PDF eBook is prepared exclusively for its purchaser, who may use it for personal
purposes only, as described by the Artima eBook license (http://www.artima.com/
ebook_license.html). In addition, the purchaser may modify this PDF eBook to high-
light sections, add comments and annotations, etc., except that the “For the exclusive
use of ” text that identifies the purchaser may not be modified in any way.

All information and materials in this eBook are provided “as is” and without warranty
of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or registered
trademarks of their owners.

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

These are the official notes for Scott Meyers’ training course, “Effective C++ in an
Embedded Environment”. The course description is at http://www.aristeia.com/c++-in-

embedded.html. Licensing information is at http://aristeia.com/Licensing/licensing.html.

For the most part, the course is based on C++98/03, although there are a few places where
C++11 or C++14 considerations are mentioned.

Please send bug reports and improvement suggestions to smeyers@aristeia.com.

In these notes, references to numbered documents preceded by N (e.g., N3092) are
references to C++ standardization document. All such documents are available via
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/.

[Comments in braces, such as this, are aimed at instructors presenting the course. All
other comments should be helpful for both instructors and people reading the notes on
their own.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503-638-6028
http://www.aristeia.com/ Fax: 503-974-1887

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Effective C++ in an Embedded Environment

© 2014 Scott Meyers, all rights reserved.
Last Revised: 2/23/15

Licensed for the exclusive use of Reto Bonderer

http://aristeia.com/Licensing/licensing.html

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Important!

In this talk, I assume you know all of C++.

You may not.

When you see or hear something you don’t recognize,
please ask!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2014 Scott Meyers, all rights reserved.

Slide 2

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 3

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 4

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Always on the Agenda

 Your questions, comments, topics, problems, etc.

Always top priority.

The primary course goal is to cover what you want to know.

 It doesn’t matter whether it’s in the prepared materials.

© 2014 Scott Meyers, all rights reserved.

Slide 5

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 6

Licensed for the exclusive use of Reto Bonderer

Other than what’s on this page, this course includes virtually no treatment of C++14.

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“C++”

Timeline and terminology:

 1998: C++98: “Old” standard C++.

 2003: C++03: Bugfix revision for C++98.

 2005: TR1: Proposed extensions to standard C++ library.

Common for most parts to ship with current compilers.

Overview comes later in course.

 2011: C++11: “New” standard C++.

Common for many parts to ship with latest compiler releases.

 2014: C++14: Comparatively minor revision to C++11.

Notable for embedded developers: more flexible constexpr functions,
binary literals, “sized” operator delete/delete[] at global scope.

© 2014 Scott Meyers, all rights reserved.

Slide 7

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

[The goal of this slide is to get people to recognize that their view about what it means to
develop for embedded systems may not be the same as others’ views. The first time I
taught this class, I had one person writing code for a 4-bit microprocessor used in a digital
camera (i.e., a mass-market consumer device), and I also had a team writing real-time
radar analysis software to be used in military fighter planes. The latter would have a very
limited production run, and if the developers needed more CPU or memory, they simply
added a new board to the system. Both applications were “embedded,” but they had
almost nothing in common.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“Embedded Systems”

Embedded systems using C++ are diverse:

 Real-time? Maybe.

 Safety-critical? Maybe.

 Challenging memory limitations? Maybe.

 Challenging CPU limitations? Maybe.

 No heap? Maybe.

 No OS? Maybe.

 Multiple threads or tasks? Maybe.

 “Old” or “weak” compilers, etc? Maybe.

 No hard drive? Often.

 Difficult to field-upgrade? Typically.

© 2014 Scott Meyers, all rights reserved.

Slide 8

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Developing for Embedded Systems

In general, little is “special” about developing for embedded systems:

 Software must respect the constraints of the problem and platform.

 C++ language features must be applied judiciously.

These are true for non-embedded applications, too.

 Good embedded software development is just good software
development.

© 2014 Scott Meyers, all rights reserved.

Slide 9

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 10

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing C++

Why Do You Care?

 You’re just curious: how do they do that?

 You’re trying to figure out what’s going on while debugging.

 You’re concerned: do they do that efficiently enough?

 That’s the focus of this presentation

 Baseline: C size/speed

Have faith:

 C++ was designed to be competitive in performance with C.

 Generally speaking, you don't pay for what you don't use.

© 2014 Scott Meyers, all rights reserved.

Slide 11

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Abandon All Hope, Ye Who Enter!

 Compilers are allowed to implement virtual functions in any way they
like:

 There is no mandatory “standard” implementation

 The description that follows is mostly true for most implementations:

 I’ve skimmed over a few details

None of these details affects the fact that virtual functions are
typically implemented very efficiently

© 2014 Scott Meyers, all rights reserved.

Slide 12

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Consider this class:

class B {
public:

B();

virtual ~B();
virtual void f1();
virtual int f2(char c) const;
virtual void f3(int x) = 0;

void f4() const;
...

};

Compilers typically number the virtual functions in the order in which
they’re declared. In this example,

 The destructor is number 0

 f1 is number 1, f2 is number 2, f3 is number 3

Nonvirtual functions get no number.

© 2014 Scott Meyers, all rights reserved.

Slide 13

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

According to the “Pure Virtual Function Called” article by Paul Chisholm (see the “Further
Information” slides at the end of the notes), the Digital Mars compiler does not always
issue a message when a pure virtual function is called, it just halts execution of the
program.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

A vtbl (“virtual table”) will be generated for the class. It will look
something like this:

Notes:

 The vtbl is an array of pointers to functions

 It points to virtual function implementations:

 The ith element points to the virtual function numbered i

 For pure virtual functions, what the entry is is undefined.
 It’s often a function that issues an error and quits.

 Nonvirtual functions (including constructors) are omitted:

Nonvirtual functions are implemented like functions in C

implementation of B::f1

implementation of B::f2

???

B’s
vtbl

implementation of B::~B

© 2014 Scott Meyers, all rights reserved.

Slide 14

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

For the first example, gcc 4.4-4.7 issue warnings. VC9-11 do not.

For the second example, none of the compilers issues a warning.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Aside: Calling Pure Virtual Functions

Most common way to call pure virtuals is in a constructor or destructor:

class B {
public:

B() { f3(10); } // call to pure virtual
virtual void f3(int x) = 0;
...

};

This is easy to detect; many compilers issue a warning.

The following case is trickier:

class B {
public:

B() { f1(); } // call from ctor to “impure” virtual; looks safe

virtual void f1() { f3(10); } // call to pure virtual from non-ctor; looks safe

virtual void f3(int x) = 0;

...
};

Compilers rarely diagnose this problem.

© 2014 Scott Meyers, all rights reserved.

Slide 15

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Now consider a derived class:

class D1: public B {
public:

D1(); // nonvirtual
virtual void f3(int x); // overrides base virtual
virtual void f5(const std::string& s); // new virtual
virtual ~D1(); // overrides base virtual
...

};

It yields a vtbl like this:

Note how corresponding function implementations have corresponding
indices in the vtbl.

implementation of B::f1

implementation of B::f2

implementation of D1::f3

D1’s
vtbl

implementation of D1::~D1

implementation of D1::f5

© 2014 Scott Meyers, all rights reserved.

Slide 16

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

A second derived class would be treated similarly:

class D2: public B {
public:

D2();
virtual void f3(int x);
...

};

 D2’s destructor is automatically generated by the compiler.

implementation of B::f1

implementation of B::f2

implementation of D2::f3

D2’s
vtbl

implementation of D2::~D2

© 2014 Scott Meyers, all rights reserved.

Slide 17

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Objects of classes with virtual functions contain a pointer to the class’s vtbl:

This pointer is called the vptr (“virtual table pointer”).

 Its location within an object varies from compiler to compiler

Object’s vptr

Data members
for

the object

© 2014 Scott Meyers, all rights reserved.

Slide 18

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Vptrs point to vtbls:

vptr

Data
Members

D1’s
vtbl

Implementations
of D1’s virtual

functions

D1 Object

vptr

Data
Members

D1 Object

vptr

Data
Members

D1 Object

Data
Members

D2 Object

vptr

Data
Members

D2 Object

Data
Members

D2 Object

D2’s
vtbl

Implementations
of D2’s virtual

functions
vptr

vptr

© 2014 Scott Meyers, all rights reserved.

Slide 19

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

B = “Base”, M = “Middle”, D = “Derived”.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Vptrs are set by code compilers insert into constructors and destructors.

 In a hierarchy, each class’s constructor sets the vptr to
point to that class’s vtbl

 Ditto for the destructors in a hierarchy.

Compilers are permitted to optimize away unnecessary vptr assignments.

 E.g., vptr setup for a D object could look like this:

D obj;

Set vptr to B’s vtbl; // may be optimized away
Set vptr to M’s vtbl; // may be optimized away
Set vptr to D’s vtbl;
...
Set vptr to M’s vtbl; // may be optimized away
Set vptr to B’s vtbl; // may be optimized away

M

Implementing Virtual Functions

B

D

© 2014 Scott Meyers, all rights reserved.

Slide 20

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Consider this C++ source code:

void makeACall(B *pB)
{

pB->f1();
}

The call to f1 yields code equivalent to this:

(*pB->vptr[1])(pB); // call the function pointed to by
// vtbl entry 1 in the vtbl pointed
// to by pB->vptr; pB is passed as
// the “this” pointer

One implication:

 When a virtual function changes, every caller must recompile!

 e.g., if the function’s order in the class changes
 i.e., its compiler-assigned number.

 e.g., if the function’s signature changes.

© 2014 Scott Meyers, all rights reserved.

Slide 21

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The diagram shows that if the first data member declared in a class has a type that requires
double-word alignment (e.g., double or long double), a word of padding may need to be
inserted after the vptr is added to the class. If the second declared data member is a word
in size and requires only single-word alignment (e.g., int), reordering the data members in
the class can allow the compiler to eliminate the padding after the vptr.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Size penalties:

 Vptr makes each object larger

Alignment restrictions could force
padding
 Reordering data members often

eliminates problem

 Per-class vtbl increases each application’s data space

Speed penalties:

 Call through vtbl slower than direct call:

 But usually only by a few instructions

 Inlining usually impossible:

 This is often inherent in a virtual call

But compared to C alternatives:

 Faster and smaller than if/then/else or switch-based techniques

 Guaranteed to be right

vptr

double

int

vptr

double

int

vptr

double

int

vptr

double

int

© 2014 Scott Meyers, all rights reserved.

Slide 22

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

SI = “Single Inheritance.” MI = “Multiple Inheritance.”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Object Addresses under Multiple Inheritance

Under SI, we can generally think of object layouts and addresses like this:

class B { ... };

class D: public B { ... };

 An exception (with some compilers) is
when D has virtual functions, but B
doesn’t.

Under MI, it looks more like this:

class B1 { ... };

class B2 { ... };

class D: public B1,
public B2 { ... };

 D objects have multiple addresses:

One for B1* and D* pointers.

Another for B2* pointers.

B1 Data

B1* D*

B2*

B Data

B* D*

B2 Data

D Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 23

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Null pointers never get an offset. At runtime, a pointer nullness test must be performed
before applying an offset.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Object Addresses under Multiple Inheritance

There is a good reason for this:

void f(B1 *pb1); // expects pb1 to point
// to the top of a B1

void g(B2 *pb2); // expects pb2 to point
// to the top of a B2

Some calls thus require offset adjustments:

D *pd = new D; // no adjustment needed

f(pd); // no adjustment needed

g(pd); // requires D* ⇒ B2* adjustment

B2 *pb2 = pd; // requires D* ⇒ B2* adjustment

Proper adjustments require proper type information:

if (pb2 == pd) … // test succeeds (pd converted to B2*)

if ((void*)pb2 == (void*)pd) … // test fails

B1* D*

B2*

B1 Data

B2 Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 24

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

I don’t remember the details, but both B1 and B2 need to declare mf for the information on
this slide to be true for VC++. For g++, I believe it suffices for only B2 to declare mf.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Virtual Functions under Multiple Inheritance

Consider the plight of your compilers:

class B1 {
public:

virtual void mf(); // may be overridden in
... // derived classes

};

class B2 {
public:

virtual void mf(); // may be overridden in
... // derived classes

};

void g(B2 *pb2) // as before
{

pb2->mf(); // requires offset adjustment
} // before calling mf?

An adjustment is needed only if D overrides mf and pb2 really points to a D.

What should a compiler do? When generating code for the call,

 It may not know that D exists.

 It can’t know whether pb2 points to a D.

B1* D*

B2*

B1 Data

B2 Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 25

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The problem is typically solved by

 Creating special vtbls that handle offset adjustments.

 For derived class objects, adding new vptrs to these vtbls, one
additional vptr for each base class after the first one:

class B1 { … };

class B2 { … };

class D:
public B1,
public B2 { … };

These special vptrs and vtbls apply only to derived class objects.

 Virtual functions for B1 and B2 objects are implemented as described
before.

Virtual Functions under Multiple Inheritance

B1 Data

B2 vptr

B1/D vptr

D Data

B1/D*

B2 Data

B2*

Impls of virtuals
declared in B2

D as B2
vtbl

D
vtbl

Impls of virtuals
declared in B1 or
D (and maybe B2)

© 2014 Scott Meyers, all rights reserved.

Slide 26

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Offset adjustments may be implemented in different ways:

 Storing deltas in the vtbl:

(*pObject->vptr[index])(pObject+Δ);

 Typically, most deltas will be 0, especially under SI.

 Passing virtual calls through thunks:

 Thunks are generated only if an adjustment is necessary.

 This approach is more common.

Δ
Func
Ptr

Virtual
Function
Impls.

Virtual Functions under Multiple Inheritance

Virtual
Function
Impls.

this adjustment

© 2014 Scott Meyers, all rights reserved.

Slide 27

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

I’m guessing about the jump in the diagram. An alternative would be for one thunk to fall
through to the next, with the sum of the offset adjustments calculated to ensure that the
proper this value is in place when the function body is entered.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Thunk Implementation

Often a function with multiple entry points:

Virtual
Function

Implementation

Return

this adjustment

jump

this adjustment

From
vtbls

© 2014 Scott Meyers, all rights reserved.

Slide 28

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

As I recall, g++ enters the function into both vtbls, but VC++ enters it into only the vtbl for
B2. This means that the call in red shown above would use the B2 vtbl under VC++, and
that means that there’d be a D*ÕB2* offset adjustment made prior to calling through the
B2 vtbl.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The details of vtbl layout and usage under MI vary from compiler to
compiler.

 When a virtual is inherited from only a non-leftmost base, it may or
may not be entered into both vtbls:

class B1 { ... }; // declares no mf

class B2 {
public:

virtual void mf();
...

};

class D: public B1, public B2 { ... };

D *pd = new D;

pd->mf(); // may use either B2’s or D’s vptr,
// depending on the compiler

D Data

B2 Data

Virtual Functions under Multiple Inheritance

B1 Data

B2 vptr

B1/D vptrB1/D*

B2*

Impls of virtuals
declared in B2

D as B2

vtbl

D

vtbl

Impls of virtuals
declared in B1 or
D (and maybe B2)

© 2014 Scott Meyers, all rights reserved.

Slide 29

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The quote is from Lippman’s Inside the C++ Object Model, for which there is a full reference
in the “Further Information” slides at the end of the notes.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Virtual Functions, MI, and Virtual Base Classes

The general case involves:

 Virtual base classes with nonstatic data members.

 Virtual base classes inheriting from other virtual base classes.

 A mixture of virtual and nonvirtual inheritance in the same hierarchy.

Lippman punts:

Virtual base class support wanders off into the Byzantine...
The material is simply too esoteric to warrant discussion...

I punt, too :-)

© 2014 Scott Meyers, all rights reserved.

Slide 30

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

This slide begins a summary of the costs of various C++ language features (compared to
C).

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“No-Cost” C++ Features

These exact a price only during compilation. In object code, they look like C:

 All the C stuff: structs, pointers, free functions, etc.

 Classes

 Namespaces

 Static functions and data

 Nonvirtual member functions

 Function and operator overloading

 Default parameters:

Note that they are always passed. Poor design can thus be costly:

void doThat(const std::string& name = "Unnamed"); // Bad

const std::string defaultName = "Unnamed";
void doThat(const std::string& name = defaultName); // Better

Overloading can be a cheaper alternative.

© 2014 Scott Meyers, all rights reserved.

Slide 31

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Both MS and Comeau offer the __declspec(novtable) mechanism to suppress vtbl
generation and vptr assignment for Interface classes. Apparently the Sun compiler will
optimize away unnecessary vtbls in some cases without any manual user intervention.
From what I can tell, as of gcc 4.x, there is no comparable feature in g++.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

More “No-Cost” C++ Features

These look like they cost you something, but in truth they rarely do
(compared to equivalent C behavior):

 Constructors and destructors:

 They contain code for mandatory initialization and finalization.

However, they may yield chains of calls up the hierarchy.

 Single inheritance

 Virtual functions

Abstract classes with no virtual function implementations (i.e.,
“Interfaces”) may still generate vtbls.
 Some compilers offer ways to prevent this.

 Virtual inheritance

© 2014 Scott Meyers, all rights reserved.

Slide 32

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Still More “No-Cost” C++ Features

 new and delete:

 By default, new = malloc + constructor(s) and
delete = destructor(s) + free

Note that error-handling behavior via exceptions is built in.

Important: new is useful even in systems where all memory is statically
allocated.

 Placement new allows objects to be constructed at particular locations:

 E.g., in statically allocated memory.

 E.g., at memory-mapped addresses.

 We’ll see examples later.

Note: for all of the preceding features, if you don't use them, you don't pay.

© 2014 Scott Meyers, all rights reserved.

Slide 33

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Details on Dan Saks’ analysis is in the Embedded Systems Design article referenced in the
“Further Information” slides at the end of the notes.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“Low-Cost” C++ Features

You may pay for these features, even if you don't use them:

 Exceptions: a small speed and/or size penalty (code)

When evaluating the cost of exceptions, be sure to do a fair
comparison.

 Error handling costs you something, no matter how it is
implemented.
 E.g., Saks reports object code increases of 15-40% for error handling

based on return values.

© 2014 Scott Meyers, all rights reserved.

Slide 34

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Approaches to Implementing Exceptions

Consider the problem of local object destruction:

{
V1
...
{

...
V2
V3
...

}
...
V4
V5
...

}

Which objects should be destroyed if an exception is thrown?

 There are two basic approaches to keeping track.

© 2014 Scott Meyers, all rights reserved.

Slide 35

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Approaches to Implementing Exceptions

One is to keep a shadow stack of objects requiring destruction if an
exception is thrown.

 Code size increases to include instructions for manipulating the
shadow stack.

 Runtime data space increases to hold the shadow stack.

 Program runtime increases to allow for shadow stack manipulations.

 Performance impact?

Unknown. Apples-to-apples comparisons are hard to come by.

 Ballpark guesstimate: 5-10% hit in both time and space.
 “Guesstimate” = “Speculation”

This is sometimes known as the “Code Approach.”

 Microsoft uses it for 32 bit (but not 64 bit) Windows code.

 g++ distributions for Windows use it, too.

© 2014 Scott Meyers, all rights reserved.

Slide 36

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Approaches to Implementing Exceptions

The alternative maps program regions to objects requiring destruction:

 This analysis is simplified, e.g., it ignores the possibility that
destructors may throw.

 Most compilers for Unix use this approach. The 64 bit Itanium ABI also
uses it.

{
V1
...
{

...
V2
V3
...

}
...
V4
V5
...

}

R0

R1

R2

R3

R4

R5

R6

Region Objects

R0 None

R1 V1

R2 V1, V2

R3 V1, V2, V3

R4 Same as R1

R5 V1, V4

R6 V1, V4, V5

© 2014 Scott Meyers, all rights reserved.

Slide 37

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Approaches to Implementing Exceptions

Implications of this “Table Approach:”

 Program speed is unaffected when no exceptions are thrown.

 Program size increases due to need to store the code to use the tables.

 Static program size increases due to need to store the tables.

When no exception is thrown, these tables need not be in memory, in
working set, or in cache.

 Throwing exceptions is slow:

 Tables must be read, possibly after being swapped in, possibly after
being uncompressed.

However, throwing exceptions should be ... exceptional.

© 2014 Scott Meyers, all rights reserved.

Slide 38

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

One platform that uses heap memory for exceptions (when it can) is g++.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Exceptions and Dynamically Allocated Memory

Some compilers try to use heap memory for exception objects.

 This can be unacceptable in some embedded systems.

Don’t let this scare you:

 Implementations reserve some non-heap memory for exception objects.

 They have to be able to propagate std::bad_alloc exceptions!

 Platforms with no heap should still be able to use exceptions.

© 2014 Scott Meyers, all rights reserved.

Slide 39

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

“QOI” = “Quality of Implementation”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“Low-Cost” C++ Features

More features you may pay for, even if you don't use them:

 Multiple inheritance: a small size penalty (vtbls that store Δs)

 dynamic_cast and other RTTI features: a small size penalty (vtbls)

 Each use of dynamic_cast may be linear in the number of base classes
(direct and indirect) of the object being cast.
 Each use may involve a call to strcmp for each class in the

hierarchy.

QOIs vary. The Technical Report on C++ Performance provides details.

© 2014 Scott Meyers, all rights reserved.

Slide 40

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ Features that can Surprise
Inexperienced C++ Programmers

These can cost you if you're not careful:

 Temporary objects, e.g., returned from a+b:

Many techniques exist to reduce the number and/or cost of such
temporaries.

 I’ll provide some references at the end of this talk.

 Templates:

We’ll discuss techniques based on inheritance and void*-pointers that
can eliminate code bloat.

© 2014 Scott Meyers, all rights reserved.

Slide 41

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Common Questions

Why are simple “hello world” programs in C++ so big compared to C?

 iostream vs. stdio

 “hello world” is an atypical program:

 For small programs, C++ programmers can still use stdio

Why do C developers moving to C++ often find their code is big and slow?

 C++ isn't C, and C programmers aren't C++ programmers

 C++ from good C++ developers as good as C from good C developers

© 2014 Scott Meyers, all rights reserved.

Slide 42

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Efficiency Beyond C

C++ can be more efficient than C:

 C++ feature implementation often better than C approximations:

 E.g., virtual functions

 Abstraction + encapsulation ⇒ flexibility to improve implementations:

 std::strings often outperform char*- based strings:
 May use reference counting (in C++98, not in C++11)
 May employ “the small string optimization”

 STL-proven techniques have revolutionized library design:

 Shift work from runtime to compile-time:
 Template metaprogramming (TMP), e.g., “traits”
 Inlined operator()s

 Sample success story: C++’s sort is faster than C’s qsort.

© 2014 Scott Meyers, all rights reserved.

Slide 43

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ Implementation Summary

 C++ designed to be competitive with C in size and speed

 Compiler-generated data structures generally better than hand-coded
C equivalents

 You generally don’t pay for what you don’t use

 C++ is successfully used in many embedded systems, e.g.:

Mobile devices (e.g., cell phones, tablets)

Air- and Spacecraft

Medical devices

Video game consoles

Networking/telecom hardware (e.g., routers, switches, etc.)

 Shipping navigations systems

© 2014 Scott Meyers, all rights reserved.

Slide 44

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 45

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The lines in the diagram represent intermediate code generated by the compiler. Black
lines are not function calls, red lines are. The two red lines on the left expand into the
black lines on the right if the calls represented by the red lines are inlined.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Pros and Cons of Inlining

Advantages of inlining:

 Function call overhead is eliminated:

 For very small functions, overall code size may shrink!

 Essential for decent performance in layered systems

 Allows modular source code with branch-free object code.

 Function calls in source code yield straight-line object code.

 Often allows for better object code optimization by compilers:

© 2014 Scott Meyers, all rights reserved.

Slide 46

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Pros and Cons of Inlining

Disadvantages:

 Debuggers can’t cope:

How do you set a breakpoint in a function that doesn’t exist?

 Overall system code size typically increases.

This can decrease cache hit rate or increase paging.

 Constrains binary compatibility for upgrade releases.

© 2014 Scott Meyers, all rights reserved.

Slide 47

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Pros and Cons of Inlining

 Some “small” functions may result in a lot of code being generated:

Overhead to support EH may be significant

Constructors may set vptrs, call base class constructors, etc.

class Base {
T1 x, y;
...

};

class Derived: public Base {
T2 z;

public:
Derived(){}

...
};

1. If on heap, call operator new

2. Call Base::Base

3. Make vptr point to Derived vtbl

4. Call constructor for z

© 2014 Scott Meyers, all rights reserved.

Slide 48

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Pros and Cons of Inlining

inline is only a request — compilers are free to ignore it:

 Compilers rarely inline virtual function calls:

 Inlining occurs at build-time, but virtuals are resolved at runtime.

Optimizations are sometimes possible:
 Virtuals invoked on objects (not pointers or references).
 Explicitly qualified calls (e.g., ClassName::virtualFunctionName()).

 Compilers often ignore inline for “complex” functions, e.g., those
containing loops

 Compilers must ignore inline when they need a pointer to the function,
e.g., constructors and destructors for arrays of objects

© 2014 Scott Meyers, all rights reserved.

Slide 49

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Code in red is function definitions, code in black is function calls.

For this problem to arise, it may not be necessary for the .cpp files to contain calls to f,
because compilers typically generate code for all functions defined in a translation unit,
even if the function isn’t called in that translation unit.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Automatic Inlining

Compilers may inline functions not declared inline, but this is uncommon.

 To inline a function, compilers need its definition, but non-inline
functions are not defined in header files.

 They’d cause duplicate symbol errors during linking:

 Non-inline functions are thus declared in headers, not defined there.

 The rules for function templates are a bit different….

.h

.cpp

.obj

.exe

void f() { … }

f, f, …, f

f(); f(); f();

f f f

…

if this non-inline function isn’t inlined…

…multiple function definitions conflict here

© 2014 Scott Meyers, all rights reserved.

Slide 50

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Code in red is function definitions, code in magenta is function declarations (or in an
object file, references to external symbols), code in black is un-inlined function calls, code
in blue is inlined function calls.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Automatic Inlining

Compilers rarely inline functions only declared in headers.

 They need to know the function body to inline it.

When they do know it, inlining is easy (and common).
 E.g., in the .cpp file defining the function:

.h

.cpp

.obj

.exe

void f();

f

f(); f(); f();

…

f() { … }
…
f();

f f f f

this non-inline function

can be inlined here

© 2014 Scott Meyers, all rights reserved.

Slide 51

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Options that enable link-time inlining are typically named whole program optimization
(WPO) or link-time optimization (LTO).

Link-time optimization became available in gcc as of version 4.5.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Inlining

Linkers may also perform inlining:

 Many already do (with appropriate options enabled).

 E.g., Microsoft, Gnu, Intel, Sun.

Still, manual inline declarations remain a necessary evil.

© 2014 Scott Meyers, all rights reserved.

Slide 52

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Pros and Cons of Inlining

Bottom line:

 Inlining is almost always a good bet for small, frequently called
functions.

Overall runtime speed is likely to increase.

 Imprudent inlining can lead to code bloat.

 Minimize inlining if binary upgradeability is important.

© 2014 Scott Meyers, all rights reserved.

Slide 53

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 54

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Code Bloat in C++

C++ has a few features you pay for (in code size and/or runtime speed),
even if you don’t use them:

 Support for exceptions.

 Support for generalized customizable iostreams.

 I.e., streams of other than char or wchar_t.

These things may reasonably be considered bloat.

Possible workarounds:

 Disable exceptions during compilation.

 Practical only if you know that no code (including libraries,
plug-ins, etc.) throws.

 Use stdio instead of iostreams.

© 2014 Scott Meyers, all rights reserved.

Slide 55

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Code Bloat in C++

However, most bloat accusations are unfair, traceable to either:

 Comparing functionality in C++ with lesser functionality in C:

 E.g., C++ virtual functions do more than C functions.

 Improper use of the language:

E.g., Putting inessential code in constructors/destructors.

The feature most associated with bloat is templates.

 That’s what I’ll focus on here.

 Most problems with “template code bloat” arise from:

Misunderstandings of template rules.

 Improper use of templates.

© 2014 Scott Meyers, all rights reserved.

Slide 56

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Templates, Header Files, and Inlining

Consider:

template<typename T> // header file for a class
class SomeClass { // template
public:

SomeClass() { ... } // implicitly declared inline
void mf1() { ... } // implicitly declared inline
void mf2(); // not implicitly declared inline
...

};

template<typename T> // template funcs are typically
void SomeClass<T>::mf2() { ... } // defined in header files, but

// this does not automatically
// declare them inline

Critical:

 Don’t declare template functions inline simply because they are defined
in headers.

Unnecessary inlining will lead to bloat.

© 2014 Scott Meyers, all rights reserved.

Slide 57

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Templates, Header Files, and Inlining

Templates need not be defined in headers:

template<typename T>
class SomeClass {
public:

SomeClass() { ... } // still implicitly inline
void mf1() { ... } // still implicitly inline
void mf2(); // declaration only; no definition
... // provided in this file

};

Code using this header will compile fine.

 But if SomeClass::mf2 is called, it won’t link.

We’ll cover how to fix that in a moment.

 Templates are typically defined in header files to avoid such problems.

© 2014 Scott Meyers, all rights reserved.

Slide 58

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Templates, Header Files, and Inlining

The convention of putting all template code in headers has an advantage:

 Single point of change for client-visible code, e.g., function declarations.

No need to change both header and implementation files.

And some disadvantages:

 Increased compilation times.

 Increased compilation dependencies for clients.

© 2014 Scott Meyers, all rights reserved.

Slide 59

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Safety-critical systems often require the elimination of dead code, so the fact that templates
can avoid generating it in the first place is attractive to people developing such systems.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Instantiating Templates

Templates that aren’t used aren’t instantiated.

 They thus generate no code and no data.

 But the need to read template headers usually slows compilation.

 Templates can thus generate less code than non-templates!

class C { // Even if C is never used, object files
public: // typically contain f1..fn. Few linkers

void f1(); // will remove all code and data related
... // to uncalled functions.
void fn();

};

template<typename T> // Object files should contain only those
class C { // functions that are called.
public:

void f1();
...
void fn();

};

 Templates can thus help avoid linking dead code into executables.

© 2014 Scott Meyers, all rights reserved.

Slide 60

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Instantiating Templates

Instantiated templates may generate both code and data:

SomeClass<int> sc; // SomeClass<int> instantiated;
// some code generated, memory
// for static class data set aside

Instantiating a class shouldn’t instantiate all its member functions:

 Only member functions that are used should be instantiated.

You shouldn’t pay for what you don’t use.

 A few compilers (typically older ones) get this wrong.

 They instantiate all member functions of a class if any is used.

We’ll discuss how to avoid this in a moment.

© 2014 Scott Meyers, all rights reserved.

Slide 61

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Instantiating Templates

Most templates are implicitly instantiated:

 Compiler notes used functions, instantiates them automatically.

 To create the functions, it needs access to their definitions.

 This is why template code is typically in header files.

 Without a definition, compiler generates reference to external symbol.

Hence SomeClass::mf2 callable w/o a definition, but a link-time
error will result.

Templates can also be explicitly instantiated:

 You can force a class or function template to be instantiated.

 For class templates, all member functions are instantiated.

 Individual member functions can also be instantiated.

© 2014 Scott Meyers, all rights reserved.

Slide 62

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Explicit Instantiation

In a .h file:

template<typename T> // as before
class SomeClass {
public:

SomeClass() { ... }
void mf1() { ... }
void mf2();
...

};

In a .cpp file:

... // Definitions of SomeClass’s
// non-inline functions go here

template // explicitly instantiate all SomeClass
class SomeClass<double>; // mem funcs for T=double; compiled

// code will go in this .cpp’s .obj file

template // explicitly instantiate SomeClass::mf2
void SomeClass<int>::mf2(); // for T=int; compiled code will go in

// this .cpp’s .obj file

© 2014 Scott Meyers, all rights reserved.

Slide 63

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Explicit Instantiation

Explicit instantiation can be a lot of work:

 You must manually list each template and set of instantiation
parameters to be instantiated.

But it can be useful:

 To create libraries of instantiations.

 To put instantiations into particular code sections.

 To avoid code bloat arising from bad compilers/linkers.

Details on next page.

© 2014 Scott Meyers, all rights reserved.

Slide 64

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

In the diagrams, code in red is function definitions, code in magenta is function
declarations (or in an object file, references to external symbols), and code in black is
function calls.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Explicit Instantiation

Your executable might end up with multiple copies of an instantiation:

 If your compiler (incorrectly) instantiates all class template member
functions when only some are used.

 If your linker is bad:

 If you use dynamic linking.

.h

.cpp

.obj

.exe f<t>, f<t>, …, f<t>

f() f() f()

f<t> f<t> f<t>

…

f<T>;

f<t>

f() f() f()
…

f<T> { … }

f<t> f<t> f<t> f<t>

f<t>

f<T> { … }

⇒

© 2014 Scott Meyers, all rights reserved.

Slide 65

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

Consider:

class IntClass {
public:

void usageInfo(std::ostream& s); // summarize usage info to s
...

};

class DoubleClass {
public:

void usageInfo(std::ostream& s); // summarize usage info to s
...

};

Both usageInfo functions will do essentially the same thing.

 This is code duplication.

 It leads to code bloat.

Note that no templates are involved here.

© 2014 Scott Meyers, all rights reserved.

Slide 66

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

A common way to eliminate such duplication is to move the duplicated code
to a base class:

class Base {
public:

void usageInfo(std::ostream& s); // summarize usage info to s
...

protected:
... // data storing usage info

};

class IntClass: public Base {
... // no declaration of usageInfo

};

class DoubleClass: public Base {
... // no declaration of usageInfo

};

Now there’s only one copy of usageInfo in the program, regardless of how
many classes inherit from Base.

© 2014 Scott Meyers, all rights reserved.

Slide 67

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

Exactly the same reasoning applies when writing templates:

template<typename T> // a template leading to bloat
class SomeClass {

...
void usageInfo(std::ostream& s); // leads to code duplication if
... // usageInfo makes no use of T

};

The solution is the same:

class Base { // same as on previous page
public:

void usageInfo(std::ostream& s);
...

};

template<typename T> // a template avoiding bloat
class SomeClass: public Base {

... // no declaration of usageInfo
};

© 2014 Scott Meyers, all rights reserved.

Slide 68

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

Moving type-invariant code into a base class sometimes called code hoisting.

It can help avoid code bloat due to multiple pointer types:

template<typename T> // general template
class Stack { ... };

class GenericPtrStack { ... }; // non-template using void*s

template<typename T> // partial specialization for
class Stack<T*>: // pointers; uses void*-based

private GenericPtrStack { // base class for all real work

... // all inline casting functions;
}; // they generate no code

All Stack instantiations for pointer types thus share their code.

 We’ll see this example in detail later.

© 2014 Scott Meyers, all rights reserved.

Slide 69

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

Code hoisting works well with inlining to avoid duplication arising from non-
type template parameters:

template<typename T, std::size_t BUFSZ> // Suspect design: each
class Buffer { // BUFSZ value will yield a

T buffer[BUFSZ]; // new set of member functions

public:
...

};

template<typename T> // Better design: BufferBase
class BufferBase { // is independent of BUFSZ

...
};

template<typename T, std::size_t BUFSZ> // Buffer does only BUFSZ-
class Buffer: public BufferBase<T> { // dependent operations.

... // Ideally, all are inline, so
}; // Buffer classes cost nothing

For details, consult Effective C++, Third Edition, Item 44.

© 2014 Scott Meyers, all rights reserved.

Slide 70

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Need to distinguish here between source code duplication and object code duplication.
Templates and inlines can reduce source code duplication, but can lead to object code
duplication.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Avoiding Code Duplication

Avoiding code bloat with templates fundamentally calls for disciplined
commonality and variability analysis:

 The parts of a template that don’t depend on the template parameters
(the common parts) should be moved out of the template.

 The remaining parts (the variable parts) should stay in the template.

This kind of analysis is critical to avoiding code duplication in any guise:

 Features common to multiple classes should be moved out of the
classes.

Maybe to a base class.

Maybe to a class template.

 Features common to multiple functions should be moved out of the
functions:

Maybe to a new function.

Maybe to a function template.

© 2014 Scott Meyers, all rights reserved.

Slide 71

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Code Bloat Summary

Most bloat can be eliminated by careful design. Arrows in your quiver:

 Consider disabling support for exceptions.

 Consider stdio instead of iostreams.

 Avoid excessive inlining, especially with templates.

 Judiciously use explicit instantiation to avoid code duplication.

 Hoist parameter-independent code out of templates.

© 2014 Scott Meyers, all rights reserved.

Slide 72

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Dealing with Function Templates

We’ve discussed only class templates, but bloat elimination techniques for
function templates are similar:

template<typename T> // template leading to bloat
void doSomething(const T& obj)
{

... // code making use of T or obj

... // code independent of T or obj

... // code making use of T or obj
}

A “hoisting” alternative:

void doSomethingHelper(); // "hoisted" code in non-template
// function; not inline

template<typename T> // revised template avoiding bloat
void doSomething(const T& obj)
{

... // code making use of T or obj
doSomethingHelper();
... // code making use of T or obj

}

© 2014 Scott Meyers, all rights reserved.

Slide 73

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Data Bloat

Not all bloat is due to code. Unnecessary classes can yield data bloat, too:

 Some classes have a vtbl, so unnecessary classes ⇒ unnecessary vtbls.

 Such unnecessary classes could come from templates.

 Functions must behave properly when exceptions are thrown, so
unnecessary non-inline functions ⇒ unnecessary EH tables.

 Such unnecessary functions could come from templates.

 This applies only to the Table Approach to EH.

An important exception to these issues are class templates that:

 Contain only inline functions.

Hence no extra EH tables.

 Contain no virtual functions.

Hence no extra vtbls.

We’ll see examples of such “bloat-free” templates later.

© 2014 Scott Meyers, all rights reserved.

Slide 74

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 75

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Interface-Based Programming

Interface-based programming:

 Coding against an interface that allows multiple implementations.

 Function interface.

Class interface.

 Client code unaware which implementation it uses.

 It depends only on the interface.

© 2014 Scott Meyers, all rights reserved.

Slide 76

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Polymorphism

Polymorphism:

 The use of multiple implementations through a single interface.

Key question: when is it known which implementation should be used?

 Runtime: each call may use a different implementation.

Use inheritance + virtual functions.

 Link-time: each link may yield a different set of implementations.

Use separately compiled function bodies.

Applies to both static and dynamic linking.

 Compile-time: each compilation may yield a different set of
implementations.

Use computed typedefs.

© 2014 Scott Meyers, all rights reserved.

Slide 77

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Runtime Polymorphism

 The “normal” meaning of interface-based programming.

 In much OO literature, the only meaning.
 Unnecessarily restrictive for C++.

 The most flexible.

Can take advantage of information known only at runtime.

 The most expensive.

 Based on vptrs, vtbls, non-inline function calls.

© 2014 Scott Meyers, all rights reserved.

Slide 78

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Runtime Polymorphism Example

class Packet { // base class (“interface”)
public:

…
virtual bool isWellFormed() const = 0;
virtual std::string payload() const = 0;
…

};

class TCPPacket: public Packet { // derived class (“implementation”)
…
virtual bool isWellFormed() const;
virtual std::string payload() const;
…

};

class CANPacket: public Packet { // derived class (“implementation”)
…
virtual bool isWellFormed() const;
virtual std::string payload() const;
…

};

© 2014 Scott Meyers, all rights reserved.

Slide 79

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Runtime Polymorphism Example

std::auto_ptr<Packet> // factory function;
nextPacket(/* params */); // generate next packet

…

std::auto_ptr<Packet> p;
while (p = nextPacket(/* params */), p.get() != 0) {

if (p->isWellFormed()) { // use Packet interface

…

}

…
}

Runtime polymorphism is reasonable here:

 Types of packets vary at runtime.

Note: As of C++11, std::unique_ptr is preferable to std::auto_ptr, and nullptr
is preferble to 0.

© 2014 Scott Meyers, all rights reserved.

Slide 80

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism

 Useful when information known during linking, but not during
compilation.

 No need for virtual functions.

 Typically disallows inlining.

Most inlining is done during compilation.

© 2014 Scott Meyers, all rights reserved.

Slide 81

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism Example

Software can be deployed on two kinds of boxes:

 Expensive, high-performance box.

Uses expensive, fast components.

 Cheaper, lower-performance box.

Uses cheaper, lower-performance components.

 Essentially the same software runs on both boxes.

Component driver implementations differ.
 A common interface can be defined.

Approach:

 One class definition for both drivers.

 Different component-dependent implementations.

 Implementations selected during linking.

 This is “C” polymorphism.

© 2014 Scott Meyers, all rights reserved.

Slide 82

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism Example

device.h:

namespace Drivers {

class Impl;

class DeviceDriver { // all nonvirtual non-inline functions
public:

DeviceDriver();
~DeviceDriver();
void reset();
…

private:
Impl *pImpl; // ptr to data for driver

};

}

All client code #includes this header and codes against this class.

 Note lack of virtual functions.

© 2014 Scott Meyers, all rights reserved.

Slide 83

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism Example

EFDevice.cpp (generates EFDevice.o, EFDevice.obj, or EFDevice.dll, etc.):

 EFDevice = “Expensive Fast Device”

namespace Drivers {

struct Impl { … }; // data needed by EFDevice driver

DeviceDriver::DeviceDriver() // ctor code for EFDevice
{ … }

DeviceDriver::~DeviceDriver() // dtor code for EFDevice
{ … }

void DeviceDriver::reset() // reset code for EFDevice
{ … }

…

}

All functions in this file have access to the Impl struct defined here.

© 2014 Scott Meyers, all rights reserved.

Slide 84

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism Example

CSDevice.cpp (generates CSDevice.o, CSDevice.obj, or CSDevice.dll, etc.):

 CSDevice = “Cheap Slow Device”

namespace Drivers {

struct Impl { … }; // data needed by CSDevice driver

DeviceDriver::DeviceDriver() // ctor code for CSDevice
{ … }

DeviceDriver::~DeviceDriver() // dtor code for CSDevice
{ … }

void DeviceDriver::reset() // reset code for CSDevice
{ … }

…

}

All functions in this file have access to the Impl struct defined here.

 Impl in this file typically different from that in EFDevice.cpp.

 Function bodies in this file also typically different.

© 2014 Scott Meyers, all rights reserved.

Slide 85

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Link-Time Polymorphism Example

Link with:

 EFDevice.o if building for expensive, high-performance box.

Or link dynamically with e.g. EFDevice.dll.

 CSDevice.o if building for cheaper, lower-performance box.

Or link dynamically with e.g. CSDevice.dll.

Link-time polymorphism is reasonable here:

 Deployment platform unknown at compilation, known during linking.

No need for flexibility or expense of runtime polymorphism.
 No vtbls.
 No indirection through vtbls.

© 2014 Scott Meyers, all rights reserved.

Slide 86

Licensed for the exclusive use of Reto Bonderer
0WGSGRHgsE

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Compile-Time Polymorphism

 Useful when:

 Implementation determinable during compilation.

Want to write mostly implementation-independent code.

 No need for virtual functions.

 Allows inlining.

 Based on implicit interfaces.

Other forms of polymorphism based on explicit interfaces.

© 2014 Scott Meyers, all rights reserved.

Slide 87

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Device Example Reconsidered

Goal:

 Device class to use determined by platform’s #bits/pointer.

 This is known during compilation.

Approach:

 Create 2 or more classes with “compatible” interfaces.

 I.e., support the same implicit interface.
 E.g., must offer a reset function callable with 0 arguments.

 Use compile-time information to determine which class to use.

 Define a typedef for this class.

 Program in terms of the typedef.

© 2014 Scott Meyers, all rights reserved.

Slide 88

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Compile-Time Polymorphism Example

Revised device.h:

#include "NASDevice.h" // NAS = “Normal Address Space” (32 bits);
// defines class NASDevice

#include "BASDevice.h" // BAS = “Big Address Space” (>32 bits);
// defines class BASDevice

#include "SASDevice.h" // SAS = “Small Address Space” (<32 bits);
// defines class SASDevice

... // remainder of device.h (coming soon)

By design, each class has a compatible interface.

 Members with identical names, compatible types, etc.

© 2014 Scott Meyers, all rights reserved.

Slide 89

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Compile-Time Polymorphism Example

Driver classes may use any language features:

 Especially inlining.

class NASDevice {
public:

…
void reset() { … } // inline function
…

};

class BASDevice {
public:

…
void reset() { … } // inline function
…

};

class SASDevice {
…
void reset(); // non-inline function
…

};

© 2014 Scott Meyers, all rights reserved.

Slide 90

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Compile-Time Polymorphism Example

Clients refer to the correct driver type this way:

Driver::type d; // d’s type is either NASDevice,
d.reset(); // BASDevice, or SASDevice,

// depending on # of bits/pointer

 Driver “computes” the proper class for type to refer to.

 Implementation on next page.

Compile-time polymorphism is reasonable here:

 Device type can be determined during compilation.

No need for flexibility or expense of runtime polymorphism.

No need to configure linker behavior or give up inlining.

© 2014 Scott Meyers, all rights reserved.

Slide 91

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

As far as I know, this can’t be done with the preprocessor, because you can’t use sizeof in a
preprocessor expression.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Compile-Time Polymorphism Example

Revised device.h (continued):

template<int PtrBitsVs32> struct DriverChoice;

template<> struct DriverChoice<-1> { // When bits/ptr < 32
typedef SASDevice type;

};

template<> struct DriverChoice<0> { // When bits/ptr == 32
typedef NASDevice type;

};

template<> struct DriverChoice<1> { // When bits/ptr > 32
typedef BASDevice type;

};

struct Driver {

enum { bitsPerVoidPtr = CHAR_BIT * sizeof(void*) };

enum { ptrBitsVs32 = bitsPerVoidPtr > 32 ? 1 :
bitsPerVoidPtr == 32 ? 0 :

-1
};

typedef DriverChoice<ptrBitsVs32>::type type;
};

© 2014 Scott Meyers, all rights reserved.

Slide 92

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Interface-Based Programming

 One interface, multiple implementations.

 Polymorphism used to select the implementation.

Runtime polymorphism uses virtual functions.

 Link-time polymorphism uses linker configuration.

Compile-time polymorphism uses typedefs.

© 2014 Scott Meyers, all rights reserved.

Slide 93

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 94

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The quote at the top of the slide is based on my first interaction with an embedded team.
They warned me that they had no heap, but when I examined their design, I saw that they
had five pools of dynamically allocated memory. What they meant was that they didn’t
call new or delete, but they still performed dynamic memory management. Effectively,
they had five heaps.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Dynamic Memory Management

Embedded developers often claim heap management isn’t an issue:

 Client: “We don’t have a heap.”

 Me: “You’re right. You have five heaps.”

Dynamic memory management is present in many embedded systems.

 Even if malloc/free/new/delete never called.

 Key indicator:

Variable-sized objects going in fixed-size pieces of memory.
 E.g., event/error logs, rolling histories, email messages, etc.

© 2014 Scott Meyers, all rights reserved.

Slide 95

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

This is not an exhaustive list of concerns, just a list of common ones.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Dynamic Memory Management

Four common worries:

 Speed:

Are new/delete/malloc/free fast enough?

How much variance, i.e., how deterministic?

 Fragmentation:

Will heap devolve into unusably small chunks?
 This is external fragmentation.

 Memory leaks:

Will some allocations go undeallocated?

 Memory exhaustion:

What if an allocation request can’t be satisfied?

Each concern can be addressed.

Used

Free

© 2014 Scott Meyers, all rights reserved.

Slide 96

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

A Survey of Allocation Strategies

Each less general than malloc/free/new/delete.

 Typically more suited to embedded use.

We’ll examine:

 Fully static allocation

 LIFO allocation

 Pool allocation

 Block allocation

 Region allocation

An optimization that may be combined with other strategies.

© 2014 Scott Meyers, all rights reserved.

Slide 97

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Fully Static Allocation

No heap. Objects are either:

 On the stack: Local to a function.

 Of static storage duration:

At global scope.

At namespace scope.

 static at file, function, or class scope.

Useful when:

 Exact or maximum number of objects in system statically determinable.

© 2014 Scott Meyers, all rights reserved.

Slide 98

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

TU = "Translation Unit."

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Fully Static Allocation

“Allocation” occurs at build time. Hence:

 Speed: essentially infinite; deterministic.

 External Fragmentation: impossible.

 Memory leaks: impossible.

 Memory exhaustion: impossible.

But:

 Initialization order of static objects in different TUs indeterminate.

© 2014 Scott Meyers, all rights reserved.

Slide 99

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“Heap Allocation”

Two common meanings:

 Dynamic allocation outside the runtime stack.

 Irregular dynamic allocation outside the runtime stack.

Unpredictable numbers of objects.

Unpredictable object sizes.

Unpredictable object lifetimes.

We’ll use the first meaning.

 The second one is just the most general (i.e., hardest) case of the first.

User-controlled non-heap memory for multiple variable-sized objects
entails heap management:

unsigned char buffer[SomeSize]; // this is basically a heap

… // create/destroy multiple different-
// sized objects in buffer

© 2014 Scott Meyers, all rights reserved.

Slide 100

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The C++ Memory Management Framework

User-defined memory management typically built upon:

 User-defined versions of malloc/free

 User-defined versions of operator new/new[], operator delete/delete[]

 New handlers:

 Functions called when operator new/new[] can’t satisfy a request.

Interface details are in Further Information.

 Here we focus on allocation strategies suitable for embedded systems.

© 2014 Scott Meyers, all rights reserved.

Slide 101

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

LIFO allocation/deallocation is fast in its own right, but another speed benefit is that an
allocation following a deallocation is likely to refer to memory that is already in the data
cache.

LIFO allocation (a natural candidate for region allocation) is good in video games, where
each level can reuse the same memory for its LIFO heap.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFO Heap Allocation

Dynamic allocation is strictly LIFO (like a stack).

Easy way to implement a “union” for multiple-mode operations:

 E.g., a system in “normal” or “diagnostic” mode.

 Static allocation requires the sum of the two modes’ memory needs.

 LIFO allocation only the maximum of the modes’ needs.

Heap Base Heap EndHeap Top

Diagnostic ModeNormal Mode

Normal or Diagnostic Mode

© 2014 Scott Meyers, all rights reserved.

Slide 102

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

This “first cut” implementation is suitable only for use as a class-specific allocator, because
the deallocate function requires that a size be passed. The next implementation shown
allows for the size of the allocated block to be hidden in the block itself, hence could be
used by non-class operator new.

The existence of data members in the class implies not just that copy functions should be
declared, but, as of C++11, typically also move functions.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFO Heap Allocation

A first cut at an implementation:

class LIFOAllocator { // provides behavior
public: // of new/delete via

LIFOAllocator(unsigned char* heapAddr, // allocate/deallocate
std::size_t heapSize)

: heapBase(heapAddr), heapEnd(heapAddr+heapSize),
heapTop(heapAddr)

{}

void* allocate(std::size_t sz) throw (std::bad_alloc); // shown shortly
void deallocate(void* ptr, std::size_t sz) throw(); // ditto

private:
unsigned char * const heapBase;
unsigned char * const heapEnd;
unsigned char *heapTop;

};

 allocate/deallocate behave like class-specific new/delete.

 Pointer data member ⇒ copying functions should be declared.

 If LIFOAllocator templatized, ctor params could be template params.

 The MMIO section has an example.
© 2014 Scott Meyers, all rights reserved.

Slide 103

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFO Heap Allocation

Classes can easily build custom new/delete using LIFOAllocator:

unsigned char heapSpace[HeapSpaceSize]; // memory for heap

LIFOAllocator customAllocator(heapSpace, // typically at global scope
HeapSpaceSize);

void* Widget::operator new(std::size_t bytes) throw (std::bad_alloc)
{

return customAllocator.allocate(bytes);
}

void Widget::operator delete(void *ptr, std::size_t size) throw ()
{

customAllocator.deallocate(ptr, size);
}

Here there’s one global heap, but per-class or per-thread heaps are easy.

 Create a LIFOAllocator for each memory block to be used as a LIFO heap.

 For per-class allocators, make the LIFOAllocators static and private.

 For per-thread allocators, use thread-local storage (TLS) for the memory.

© 2014 Scott Meyers, all rights reserved.

Slide 104

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The only way that 0 bytes could be requested is that somebody explicitly calls
className::operator new(0); it’s not possible to get it from a new expression. Proper
deallocation in that case would be tricky, because the caller would have to explicitly call
className::operator delete(ptr, 1), i.e., know a priori that a 0-byte request yields a 1-byte
allocation. I don’t know of a simple way to address this problem.

The comments “overflow?” and “alignment?” show places where these issues have to be
considered. In the skeletal code in thise slides, they are simply flagged and ignored.

The only standard-conforming way to address the alignment issue is to make sure that this
function always returns a pointer to memory that is aligned for any data type.

std::get_new_handler is new to C++11. Earlier compilers must do the following instead:

std::new_handler currentHandler = std::set_new_handler(0);
std::set_new_handler(currentHandler);

The diagram is supposed to make it easy to refer to the memory layout of the LIFO heap.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFOAllocator::allocate

Implemented just like global operator new:

void* LIFOAllocator::allocate(std::size_t bytes) throw (std::bad_alloc)
{

if (bytes == 0) bytes = 1;

while (true) {
if (heapTop + bytes <= heapEnd) { // overflow?

unsigned char *pMem = heapTop; // alignment?
heapTop += bytes;
return pMem;

}

std::new_handler currentHandler = std::get_new_handler();

if (currentHandler) currentHandler();
else throw std::bad_alloc();

}
}

 Comments indicate issues we’re ignoring.

 With this design, hard for new handler to increase available memory.

Heap
End

Heap Top

© 2014 Scott Meyers, all rights reserved.

Slide 105

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The diagram is supposed to make it easy to refer to the memory layout of the LIFO heap

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFOAllocator::deallocate

void LIFOAllocator::deallocate(void *ptr, std::size_t size) throw ()
{

if (ptr == nullptr) return;

if (heapTop != static_cast<unsigned char*>(ptr) + size) {

// either client usage error or heap-related data structures are invalid
Log the problem, then call exit or abort or restart/reboot the system.

}

heapTop -= size;
}

 Exception specification ⇒ throwing an exception isn’t an option.

Heap
Top

ptr

© 2014 Scott Meyers, all rights reserved.

Slide 106

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

I have not seen a convincing explanation for why ::operator delete is not specified to take a
size_t parameter, and C++14 adds support for operators delete and delete[] with size_t

parameters at global scope. Their behavior is analogous to operators delete and delete[] at
class scope.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Supporting Global new/delete

Global operator delete lacks size info, but heapTop -= size still needed, so:

 Have LIFOAllocator::allocate optionally hide the size in the memory.

 Overload LIFO::deallocate to take only a ptr and use hidden size info.

class LIFOAllocator {
public:

…
void* allocate(std::size_t sz, bool hideSize) throw (std::bad_alloc);
void deallocate(void* ptr, std::size_t sz) throw ();
void deallocate(void* ptr) throw ();

};

It’d be better software engineering to use an enum instead of a bool…

size memory for client use

pointer returned
from allocate

© 2014 Scott Meyers, all rights reserved.

Slide 107

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Supporting Global new/delete

Global new/delete are then easy to implement:

void* operator new(std::size_t bytes) throw (std::bad_alloc)
{

return customAllocator.allocate(bytes, true);
}

void operator delete(void *ptr) throw ()
{

customAllocator.deallocate(ptr); // note lack of size param
}

As are class-specific versions:

void* Widget::operator new(std::size_t bytes) throw (std::bad_alloc)
{

return customAllocator.allocate(bytes, false);
}

void Widget::operator delete(void *ptr, std::size_t size) throw ()
{

customAllocator.deallocate(ptr, size);
}

© 2014 Scott Meyers, all rights reserved.

Slide 108

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

In a situation analogous to the one mentioned before, this code will have a problem if
bytes is 0 and hideSize is false. As before, that can happen only if somebody explicitly
calls className::operator new(0).

The comments “overflow?” and “alignment?” show places where these issues have to be
considered. In the skeletal code in thise slides, they are simply flagged and ignored.

The only standard-conforming way to address the alignment issue is to make sure that this
function always returns a pointer to memory that is aligned for any data type.

The diagram is supposed to make it easy to refer to the memory layout of an allocated
block where the size has been stored at the beginning.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Supporting Global new/delete

void* LIFOAllocator::allocate(std::size_t bytes, bool hideSize) throw (std::bad_alloc)
{

if (bytes == 0) bytes = 1;

if (hideSize)
bytes += sizeof(std::size_t); // add space for size;

// overflow?
while (true) {

if (heapTop + bytes <= heapEnd) { // overflow?
unsigned char *pMem = heapTop; // alignment?
if (hideSize) {

reinterpret_cast<std::size_t>(pMem) = bytes; // alignment?
pMem += sizeof(std::size_t); // alignment?

}

heapTop += bytes;
return pMem;

}

check/use the new handler as usual;

}
}

pmem if
size hidden

Initial
pmem

© 2014 Scott Meyers, all rights reserved.

Slide 109

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The diagram is supposed to make it easy to refer to the memory layout of an allocated
block where the size has been stored at the beginning.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Supporting Global new/delete

void LIFOAllocator::deallocate(void *ptr) throw ()
{

if (ptr == nullptr) return;

unsigned char *pMem =
static_cast<unsigned char*>(ptr) – sizeof(std::size_t);

std::size_t size = *reinterpret_cast<std::size_t*>(pMem);

if (heapTop != pMem + size) {

// either client usage error or heap-related data structures are invalid
Log the problem, then call exit or abort or restart/reboot the system.

}

heapTop -= size;
}

ptrpmem

© 2014 Scott Meyers, all rights reserved.

Slide 110

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

LIFO Heap Allocation

 Speed: extremely fast; deterministic.

Assuming you don’t run out of memory.

 External Fragmentation: possible, but easy to detect (as shown).

 Memory leaks: possible, easy to detect.

 Memory exhaustion: possible.

© 2014 Scott Meyers, all rights reserved.

Slide 111

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Pool Allocation

Heap allocations are all the same size.

 Typically because all heap objects are one size.

Well-suited for class-specific allocators.

 Can also work when all heap objects are nearly the same size.

 Then all allocations are the size of the largest objects.

Basic approach:

 Treat heap memory as an array.

 Each element is the size of an allocation unit.
 No need to store the size of each allocation.

 Unallocated elements are kept on a free list.

 Allocation/deallocation is a simple list operation:

Removing/adding to the front of the free list.

© 2014 Scott Meyers, all rights reserved.

Slide 112

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

There’s no deallocate taking only a void*, because Pool allocators are virtually always used
inside classes, i.e., when operator delete gets a size argument.

As noted earlier, the existence of data members in the class implies not just that copy
functions should be declared, but, as of C++11, typically also move functions.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Pool Allocation

template<std::size_t ElementSize>
class PoolAllocator {
public:

PoolAllocator(unsigned char* heapAddr,
std::size_t heapSize); // on next page

void* allocate(std::size_t sz) throw (std::bad_alloc); // coming soon
void deallocate(void* ptr, std::size_t sz) throw (); // ditto

private:
union Node { // pool element

unsigned char data[ElementSize]; // when in use
Node *next; // on free list

};

Node *freeList;
};

 Pointer data member ⇒ copying functions should be declared.

 If PoolAllocator untemplatized, template param could be ctor param.

 Ideally, we’d ensure that ElementSize > 0.

© 2014 Scott Meyers, all rights reserved.

Slide 113

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

To avoid alignment problems, this code should check heapAddr to see if it is suitably
aligned. If not, an exception could be thrown or sufficient bytes could be skipped at the
beginning of the memory to get to a suitably aligned address.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

PoolAllocator Constructor

template<std::size_t ElementSize>
PoolAllocator<ElementSize>::PoolAllocator(unsigned char* heapAddr,

std::size_t heapSize)
: freeList(reinterpret_cast<Node*>(heapAddr))
{

const std::size_t nElems = heapSize / ElementSize;

for (std::size_t i = 0; i < nElems-1; ++i) // link array elements together
freeList[i].next = &freeList[i+1];

freeList[nElems-1].next = nullptr;
}

…
heapAddr

freeList

© 2014 Scott Meyers, all rights reserved.

Slide 114

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The proper place to deal with the alignment issue is the constructor. See the comment on
the slide for that code.

std::get_new_handler is new to C++11. Earlier compilers must do the following instead:

std::new_handler currentHandler = std::set_new_handler(0);
std::set_new_handler(currentHandler);

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

PoolAllocator::allocate

template<std::size_t ElementSize>
void* PoolAllocator<ElementSize>::allocate(std::size_t bytes)

throw (std::bad_alloc)
{

if (bytes != ElementSize) return ::operator new(bytes);

while (true) {
if (freeList != nullptr) {

void *pMem = freeList; // alignment?
freeList = freeList->next;
return pMem;

}

std::new_handler currentHandler = std::get_new_handler();

if (currentHandler) currentHandler();
else throw std::bad_alloc();

}
}

© 2014 Scott Meyers, all rights reserved.

Slide 115

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

PoolAllocator::deallocate

template<std::size_t ElementSize>
void PoolAllocator<ElementSize>::deallocate(void *ptr, std::size_t size)

throw ()
{

if (ptr == nullptr) return;

if (size != ElementSize) {
::operator delete(ptr);
return;

}

Node *p = static_cast<Node*>(ptr);
p->next = freeList;
freeList = p;

}

© 2014 Scott Meyers, all rights reserved.

Slide 116

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

PoolAllocator::allocate

Variation: allow bytes <= ElementSize, i.e., that the request fits.

 More flexible, but can lead to internal fragmentation.

Used

Free

Internal
Fragmentation

© 2014 Scott Meyers, all rights reserved.

Slide 117

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Pool Allocation

Client code:

 “Clients” are implementers of operators new/delete.

 Left as an exercise for the attendee :-)

 operator new calls allocate

 operator delete calls deallocate

 Similar to LIFOAllocator.

© 2014 Scott Meyers, all rights reserved.

Slide 118

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Pool Allocation

 Speed: extremely fast; deterministic.

Assuming:
 No wrong-sized requests.
 You don’t run out of memory.

 External Fragmentation: impossible.

 Memory leaks: possible.

 Memory exhaustion: possible.

© 2014 Scott Meyers, all rights reserved.

Slide 119

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Block Allocation

Essentially a set of pools with different element (block) sizes:

n-byte requests handled by first pool with size ≥ n and non-null free list.

Useful when:

 Allocations needed for a relatively small number of object sizes.

Otherwise internal fragmentation ⇒ wasted memory.

Many RTOSes offer native support for block allocation.

Pool for
allocations
of size s1

Pool for
allocations
of size s2

Pool for
allocations
of size s3

Pool for
allocations
of size s4

Pool for
allocations
of size s5

© 2014 Scott Meyers, all rights reserved.

Slide 120

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Speed isn’t totally deterministic, because you may need to examine multiple pools to find
one with sufficient free memory.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Block Allocation

 Speed: fast; nearly deterministic (and boundable).

Assuming:
 No requests larger than handled by the largest-chunk pool.
 You don’t run out of memory.

 External Fragmentation: impossible.

 Memory leaks: possible.

 Memory exhaustion: possible.

© 2014 Scott Meyers, all rights reserved.

Slide 121

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

General Variable-Sized Allocation

What new/delete/malloc/free already do.

 Desirable only if vendor-supplied routines unacceptable.

Possible motivations:

 Detect overruns/underruns.

 Gather heap usage data.

 Size and lifetime distributions, temporal usage patterns, etc.

 Support data structure clustering.

 Avoid thread-safety penalty.

 ST applications.

 Thread-local allocators in MT applications.

© 2014 Scott Meyers, all rights reserved.

Slide 122

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Region Allocation

An optimization for when memory for all of a heap’s objects can be
released at once.

 Clients call a region member function at the appropriate time.

 Faster than deallocating each object’s memory individually.

 Common with LIFO allocators, but compatible with pools, blocks, etc.

 operator delete for individual objects a no-op, hence very fast.

Can still use delete operator to invoke destructors:

delete p; // invoke *p’s dtor, then operator delete on p;
// if *p in a region, operator delete is a no-op

© 2014 Scott Meyers, all rights reserved.

Slide 123

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Dynamic Memory Management

 Many embedded systems include dynamic memory management.

 Key issues are speed, fragmentation, leaks, and memory exhaustion.

 LIFO is fast and w/o fragmentation, but object lifetimes must be LIFO.

 Pools are fast and w/o fragmentation, but object sizes are limited.

 Block allocation is essentially multiple pool allocators.

 Regions excel when all heap objects can be released simultaneously.

© 2014 Scott Meyers, all rights reserved.

Slide 124

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 125

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Anything can be burned into ROM and loaded into RAM prior to program
execution.

 Provided the architecture allows it.

Harvard does not.

The more interesting question is:

 What may remain in ROM as the program runs?

The C++ Standard is silent on ROMing:

 It allows essentially anything, guarantees nothing.

 What’s ROMable is thus up to your compiler and linker.

In what follows, I discuss what is technically possible.

 Your compiler/linker probably imposes some restrictions.

 We’ll discuss those first.

© 2014 Scott Meyers, all rights reserved.

Slide 126

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The definition of POD types in C++98/03 is stricter, because protected and private non-
static data members are precluded.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

To understand the restrictions, we need to know what a “POD type” is.

 “POD” = “Plain Old Data”

 All C data types are POD types.

 C++11 classes, structs, and unions are generally POD types if they lack:

 Base classes

Virtual functions

Non-static data members of reference type

User-defined constructors, destructor, or assignment operators

Non-static data members of non-POD types

Essentially, a C++11 class or struct is a POD type if it’s “laid out like C and
its semantics are preserved if it’s memcpyed.”

 But note that non-virtual member functions are allowed.

 Static data and static member functions are allowed, too.

© 2014 Scott Meyers, all rights reserved.

Slide 127

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Common restrictions on ROMing data:

 Many compilers/linkers will ROM only statically initialized POD types.

As we’ll see, it is technically possible for some dynamically
initialized non-PODs to be ROMed.

 Some compilers/linkers will ROM structs, but not classes.

 There is no technical reason for this distinction.

© 2014 Scott Meyers, all rights reserved.

Slide 128

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

A full reference for the Technical Report on Performance is given in the “Further Information”
slides at the end of the notes.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Program instructions can always be ROMed.

Data in a C++ program can be ROMed if it meets two criteria:

 Its value is known before runtime.

 I.e., either the compiler or the linker knows it or can compute it.

 It can’t be modified at runtime.

The following examples are largely based on the ROMability section of the
Technical Report on C++ Performance.

© 2014 Scott Meyers, all rights reserved.

Slide 129

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

If it’s ROMable in C, it’s ROMable in C++:

static const int table[] = { 1, 2, 3 }; // table is ROMable

const char *pc1 = "Hello World"; // "Hello World" is ROMable
// (but pc1 is not)

const char * const pc2 = "World"; // "World" is ROMable (and
// may be shared with
// "Hello World");
// pc2 is also ROMable

© 2014 Scott Meyers, all rights reserved.

Slide 130

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

const objects have internal linkage, so if no const propagation is performed, the first
example on this page could yield multiple copies of bufsize in an executable.

Per the 2003 ISO C++ Standard (section 4.5, paragraph 2), “An rvalue of…an enumeration
type can be converted to an rvalue of the first of the following types that can represent all
the values of its underlying type: int, unsigned int, long, or unsigned long.” This means
that even anonymous enums can benefit from the C++11 ability to specify the underlying
type, because that can affect overload resolution when enumerants are passed as
parameters.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Integral scalar constants of static storage duration are ROMable, but they
are often optimized away entirely:

const unsigned bufsize = 128; // typically optimized away unless
// bufsize’s address is taken

Enums take no storage, and they’re safer than #defines:

enum { bufsize = 128 }; // almost always optimized away

 No portable way to specify the size of an enumerant in C++03.

 Supported directly in C++11:

enum: unsigned short { bufsize = 128 }; // C++11

Such constants typically become immediate operands in instructions.

 If they’re not, they can definitely be ROMed.

 There is no advantage to using #defines in these cases.

 #defines don’t respect scope.

 #defines can’t be private or protected.

© 2014 Scott Meyers, all rights reserved.

Slide 131

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

For non-integral scalar constants, consts are safer than #defines and may be
more efficient:

#define pi 3.14159 // ROMable, but subject to
// macro drawbacks

const double pi = 3.14159; // ROMable, but not subject
// to macro drawbacks

Floating point values can rarely be turned into immediate operands:

 They’re ROMable in both forms above.

 With a bad compiler, the macro form might result in multiple copies of
pi in an object file.

 This shouldn’t happen with the const.
 It should never yield more than one copy in an object file.

© 2014 Scott Meyers, all rights reserved.

Slide 132

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Objects may be ROMed if the following are true:

 They are declared const at their point of definition.

 They contain no mutable data members.

 They are initialized with values known during compilation.

 Such “knowledge” might come from dataflow analysis, etc.

struct Point {
int x, y;

};

const Point origin = { 0, 0 }; // origin is ROMable

struct Widget { // all Widgets can be bitwise
int a; // initialized from a ROMed
const char *p; // Widget initialized with
Widget(): a(7), p("xyzzy") { } // { 7, "xyzzy" }

};

const Widget w; // w is ROMable (even though
// it’s a non-POD requiring
// dynamic initialization)

© 2014 Scott Meyers, all rights reserved.

Slide 133

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

In C++11, class Widget is a POD, but it’s still not an aggregate, nor can it be brace-
initialized without adding a constructor taking a std::initializer_list parameter.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

C++98 POD types have limited encapsulation. A wrapper can often help:
class Widget { // non-POD in C++98

int x, y; // (has private data)

};

const Widget w = { 0, 0 }; // illegal – w isn’t an aggregate

struct Widget { // POD (and an aggregate)

int x, y;

};

const Widget w = { 0, 0 }; // typically will be ROMed

class WidgetWrapper {

struct Widget { int x, y; } // POD

static const Widget w; // ROMable

};

const WidgetWrapper::Widget

WidgetWrapper::w = { 0, 0 }; // typically will be ROMed

For details, consult Herity’s 1998 Embedded Systems Programming article.

© 2014 Scott Meyers, all rights reserved.

Slide 134

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

Some compiler generated data structures can usually be ROMed:

 Virtual function tables

 RTTI tables and type_info objects

 Tables supporting exception handling

ROMing these objects may be impossible if they are dynamically linked
from shared libraries.

© 2014 Scott Meyers, all rights reserved.

Slide 135

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ and ROM

What’s not ROMable? Objects that may be modified at runtime.

 Objects with nontrivial constructors or destructors.

class Widget {
public:

Widget(); // Widget objects won’t be ROMable
...

};

 Objects with mutable members.

class Widget {
mutable int lastValue; // Widget objects won’t be ROMable
...

};

 Objects not defined to be const.

int x = 14; // x isn’t const, hence not ROMable
std::string s = "xyzzy"; // s isn’t const, hence not ROMable

Of course, 14 and "xyzzy" can still be ROMed.

© 2014 Scott Meyers, all rights reserved.

Slide 136

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: C++ and ROM

 Most compilers/linkers are willing to ROM statically initialized POD
types.

Aggressive build chains may go beyond this.

 ROMable PODs can be encapsulated by making them protected or
private in a non-POD type.

 Compiler-generated data structures are typically ROMable.

© 2014 Scott Meyers, all rights reserved.

Slide 137

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 138

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Memory-Mapped IO

Many systems map IO devices to fixed parts of a program’s address space.

 Input registers are often separate from output registers.

 Control/status registers are often separate from data registers.

Different status register bits convey information such as readiness or
whether device interrupts are enabled.

C++ makes it easy to make memory-mapped IO devices look like objects
with natural interfaces.

 At zero cost.

 Provided you have a decent compiler :-)

© 2014 Scott Meyers, all rights reserved.

Slide 139

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Memory-Mapped IO

Memory-mapped devices may require special handling, e.g.,

 Atomic reads/writes may require explicit synchronization.

 Individual bits may sometimes be read-only, other times write-only.

 Clearing a bit may require assigning a 1 to it.

 One status register may control more than one data register.

 E.g., bits 0-3 are for one data register, bits 4-7 for another.

What follows is a framework for modeling memory-mapped IO, not a
prescription.

 The framework tells you where to put whatever special handling your
devices require.

© 2014 Scott Meyers, all rights reserved.

Slide 140

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Some lint-like tools will complain about the implementations of ready and
interruptsEnabled, because they return the result of bit operations as bools. To quiet such
tools, it can be preferable to write them more like this:

bool ready() const { return (regValue & bit0) == true; }

enableInterrupts and disableInterrupts use read/modify/write instructions, so they may be
subject to race conditions in multithreaded systems.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling a Control Register

Suppose we have a four-byte control register such that:

 Bit 0 indicates readiness: 1 ⇒ ready, 0 ⇒ not ready.

 Bit 2 indicates whether interrupts are enabled: 1 ⇒ enabled, 0 ⇒ not.

Assuming an int is four bytes in size, we can model the register like this:

enum { bit0 = 0x1, bit1 = 0x2, ... , bit31 = 0x80000000 };

class ControlReg {
public:

bool ready() const { return regValue & bit0; }
bool interruptsEnabled() const { return regValue & bit2; }
void enableInterrupts() { regValue |= bit2; }
void disableInterrupts() { regValue &= ~bit2; }

private:
volatile unsigned regValue; // data in register may change

}; // outside program control

All functions are inline, so their existence should incur no cost.

 Assuming they are actually inlined.

© 2014 Scott Meyers, all rights reserved.

Slide 141

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

In theory, you could use std::aligned_storage (or std::tr1::aligned_storage) to solve the
alignment problem, but then you’d have to worry that the total amount of underlying
storage might be larger than the register you are modeling. For this kind of application, it
seems to me that you want more precise control over the amount of storage allocated than
std::aligned_storage gives you.

Caching the most recently written value is tricky, because adding a data member to the
class is unacceptable. One possible approach is to have an external data structure indexed
by MMIO address (e.g., a map) that holds auxillary device information, e.g., the most
recently written value. The cached value would then be accessed as something like
auxillaryData[this].

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling a Control Register

Notes:

 In this example, we assume that an unsigned int has the proper size
and alignment for the register:

 If it doesn’t, you’ll need to choose a data type that does.

 The header <stdint.h> (offering e.g., uint32_t) can be helpful here.
 Standard in C99 and C++11.

 We also assume that the register is both readable and writable.

 If it’s write-only, you’ll need to cache the most recently written value.

© 2014 Scott Meyers, all rights reserved.

Slide 142

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Masks vs. Bitfields

 The design deliberately uses manual masking instead of bitfields.

Compilers need not map bitfields in the “obvious” fashion:

class ControlReg { // suspect design
public:

bool ready() const { return readyBit; }
...

private:
volatile unsigned readyBit :1, // Unreliable!

/* unused */ :1, // Compilers need not
interruptEnabledBit :1, // map readyBit to
/* unused */ :29; // bit 0, etc.

};

However, on some platforms, bitfields may be faster.

© 2014 Scott Meyers, all rights reserved.

Slide 143

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Aside: new and Placement new

A new expression like T *p = new T does two things:

1. Call an operator new function to find out where to put the T object.

2. Call the appropriate T constructor.

Important: operator new’s fundamental job is not to allocate memory, it’s
to identify where an object should go.

 Usually, this results in dynamic memory allocation.

 Sometimes you know where you want an object to be placed:

You have an MMIO address where you want to put an object.

You have a memory buffer you’d like to construct an object in.

 You can pass operator new where you want to put something, and it
will return that location:

void* operator new(std::size_t, void *ptrToMemory)
{ return ptrToMemory; }

 This form of operator new is called placement new.

 It’s a standard form available everywhere.

© 2014 Scott Meyers, all rights reserved.

Slide 144

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Aside: new and Placement new

Because an expression like T *p = new T calls two functions, we need a way
to pass two lists of parameters.

 This passes constructor arguments: T *p = new T(ctor args);

 This passes arguments to operator new: T *p = new (op new args) T;

 This does both: T *p = new (op new args) T(ctor args);

You can thus use any constructor on an object you are creating via
placement new.

© 2014 Scott Meyers, all rights reserved.

Slide 145

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling a Control Register

Memory-mapped IO registers occur at specific addresses. To create a
ControlReg object at the correct address, we use placement new.

// create a ControlReg object at address 0xFFFF0000 and
// make pcr point to it

ControlReg * const pcr =
new (reinterpret_cast<void*>(0xFFFF0000)) ControlReg;

 Remember, with placement new, no memory is being allocated.

Once you have pcr, you can use it to communicate with the device:

while (!pcr->ready()) ; // wait until the ready bit is on

pcr->enableInterrupts(); // enable device interrupts

if (pcr->interruptsEnabled()) ... // if interrupts are enabled...

© 2014 Scott Meyers, all rights reserved.

Slide 146

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling a Control Register

You can avoid the pointer syntax by binding the dereferenced pointer to a
reference:

ControlReg& cr =
new (reinterpret_cast<void>(0xFFFF0000)) ControlReg;

while (!cr.ready()) ; // wait until the ready bit is on

cr.enableInterrupts(); // enable device interrupts

if (cr.interruptsEnabled()) ... // if interrupts are enabled...

© 2014 Scott Meyers, all rights reserved.

Slide 147

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Placement new vs. Raw Casts

Our use of placement new calls the default ControlReg constructor.

 It’s implicit, inline, and empty.

 It should optimize away (i.e., to zero instructions).

 If it doesn’t and you care, consider a reinterpret_cast instead of
placement new:

ControlReg * const pcr = // pointer version
reinterpret_cast<ControlReg*>(0xFFFF0000);

ControlReg& cr = // reference version
reinterpret_cast<ControlReg>(0xFFFF0000);

© 2014 Scott Meyers, all rights reserved.

Slide 148

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Placement new vs. Raw Casts

Placement new is typically preferable to a raw reinterpret_cast:

 It works if the device object’s constructor has work to do.

 A raw cast will behave improperly in that case.

But there are times when reinterpret_cast can be superior:

 If placement new isn’t optimized to zero instructions (and you care).

 If you want to ROM the address of an IO register and

Your compiler will ROM the result of a reinterpret_cast and

 It won’t ROM the result of a use of placement new.

© 2014 Scott Meyers, all rights reserved.

Slide 149

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Placing Objects via Compiler Extensions

With some compilers/linkers, there is another alternative:

 Use a compiler extension to place an object at a specific address.

Examples:

 Altium Tasking compilers offer this kind of syntax:

ControlReg cr __at(0xFFFF0000);

 The Wind River Diab compiler offers this:

#pragma section MMIO address=0xFFFF0000
#pragma use_section MMIO cr
ControlReg cr;

Such extensions may impose restrictions:

 E.g., such manually-placed objects may have to be POD types.

Payoffs:

 No need to access MMIO objects indirectly through a pointer.

 No need to allocate space for a pointer to each MMIO object.

© 2014 Scott Meyers, all rights reserved.

Slide 150

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

For this approach to work, objects to be placed (e.g., cr) must presumably have external
linkage.

I have no example excerpt from a linker script, because I was unable to find or develop a
simple example. gcc supports linker scripts, and basic information about them (e.g.,
reference manuals) is easy to find via Google.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Placing Objects via Linker Commands

Linkers may support specification of where objects are to be placed:

 C++ source code is “normal.”

No object placement information is present.

ControlReg cr; // in C++ source file

 Linker scripts map C++ objects to memory locations, often by:

Mapping objects to sections.
 The linker sees only mangled names.

Mapping sections to address ranges.

Result is more portable C++ code.

 Platform-specific addresses mentioned only in linker scripts.

 “Hardware engineers exercise their reign of terror on someone else.”

© 2014 Scott Meyers, all rights reserved.

Slide 151

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 1

An int-sized output device register can be modeled as a ControlReg object
bundled with the int-sized data it controls:

class OutputDevice1 {
public:

OutputDevice1(unsigned controlAddr,
unsigned dataAddr); // see next page

ControlReg& control() { return *pcr; } // get ControlReg

void write(unsigned value) // write data to
{ *pd = value; } // device

private:
ControlReg * const pcr; // ptr to ControlReg; note const
volatile unsigned * const pd; // ptr to data; note const and volatile

};

© 2014 Scott Meyers, all rights reserved.

Slide 152

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 1

The constructor makes pcr and pd point to the correct addresses:

inline
OutputDevice1::OutputDevice1(unsigned controlAddr, unsigned dataAddr)
: pcr(new (reinterpret_cast<void*>(controlAddr)) ControlReg),

pd(new (reinterpret_cast<void*>(dataAddr)) unsigned)
{}

Clients use the class like this:

OutputDevice1 od(0xFFFF0000, // ctrl reg addr
0xFFFF0004); // data reg addr

unsigned x;

...

while (!od.control().ready()) ; // wait until the ready bit is on

od.write(x); // write x to od

...

© 2014 Scott Meyers, all rights reserved.

Slide 153

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Static member functions such as control and write can be invoked before objects of type
OutputDevice2 have been constructed, and that could be problematic, both in general and
in this example if, as on the next page, ControlReg requires construction before use. Such
problems can be avoided by using non-static member functions. Calling such functions
would lead to an unnecessary this pointer being passed to the member functions (modulo
optimization).

On some architectures, this could yield larger, slower code than for OutputDevice1,
because OutputDevice2 requires the full address in generated machine instructions, while
OutputDevice1 may be able to get away with just using an offset (which can be smaller
than a full address).

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 2

MMIO addresses are compile-time constants, so it shouldn’t be necessary
to store them as data members like pcr and pd.

A template with non-type parameters makes it easy not to:

template<unsigned controlAddr, unsigned dataAddr>
class OutputDevice2 {
public:

// ctor now gone
static ControlReg& control()
{ return *reinterpret_cast<ControlReg*>(controlAddr); }

static void write(unsigned value)
{ *reinterpret_cast<volatile unsigned*>(dataAddr) = value; }

// data members now gone
};

OutputDevice2 uses static member functions to avoid passing this pointers.

© 2014 Scott Meyers, all rights reserved.

Slide 154

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 2

This example assumes the ControlReg constructor/destructor do nothing.

 Otherwise OutputDevice2 will need a constructor/destructor that call
them (e.g., via placement new).

template<unsigned controlAddr, unsigned dataAddr>
class OutputDevice2 {
public:

OutputDevice2()
{ new (reinterpret_cast<ControlReg*>(controlAddr)) ControlReg; }
…

};

 Such initialization/cleanup must occur only once!

 Problematic if multiple OutputDevice2 objects exist for a single
hardware device.
 Use Singleton to prevent multiple instantiations?
 Use static alreadyInitialized/alreadyCleanedup flags?

© 2014 Scott Meyers, all rights reserved.

Slide 155

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 2

Client code looks almost the same as before:

OutputDevice2<0xFFFF0000, 0xFFFF0004> od;

unsigned x;

...

while (!od.control().ready()) ; // wait until the ready bit is on

od.write(x); // write x to od

...

Advantages of this approach:

 OutputDevice2 objects are smaller than OutputDevice1 objects.

 OutputDevice2 code may also be smaller/faster than OutputDevice1 code.

No need to go indirect via a this pointer.

Thanks to Siegward Jäkel for the essence of this approach.

© 2014 Scott Meyers, all rights reserved.

Slide 156

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling an Output Device, Take 3

If, as in this case, the control and data registers are in contiguous memory,
you can use a third design:

 Create objects directly on the MMIO locations:

class OutputDevice3 {
public:

ControlReg& control() { return cr; }
void write(unsigned value) { data = value; }

private:
OutputDevice3(const OutputDevice3&); // prevent copying
ControlReg cr;
volatile unsigned data;

};

 Have clients use placement new (or bare reinterpret_cast) themselves:

// create OutputDevice3 object at address 0xFFFF0000

OutputDevice3& od =
* new (reinterpret_cast<void*>(0xFFFF0000)) OutputDevice3;

© 2014 Scott Meyers, all rights reserved.

Slide 157

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Hardware Directly

There are thus two kinds of classes for modeling memory-mapped IO.

One kind models hardware directly.

 Objects of such classes are created by clients at specific addresses.

Via placement new or reinterpret_cast.

 They contain only non-static data that maps to MMIO registers:

class OutputDevice3 { // class designed to be
public: // instantiated at MMIO

... // addresses
private:

OutputDevice3(const OutputDevice3&);
ControlReg cr; // data members map directly
volatile unsigned data; // to MMIO device registers

};

 Static data is okay.

 They never contain virtual functions.

Virtual functions leads to a vptr somewhere within each object.

© 2014 Scott Meyers, all rights reserved.

Slide 158

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Hardware Indirectly

The other kind models hardware indirectly.

 Objects of such classes are not created at specific addresses.

Clients pass MMIO addresses as template or constructor arguments.

 They may contain “extra” data members.

 I.e., that don’t correspond to MMIO device registers.

class OutputDevice1 {
...

private:
ControlReg * const pcr; // data members that don’t map
volatile unsigned * const pd; // to MMIO device registers

unsigned lastValueWritten; // useful for write-only registers
};

© 2014 Scott Meyers, all rights reserved.

Slide 159

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Hardware Indirectly

 They may contain virtual functions:

class DeviceBase {
public:

virtual void reset() = 0;
…

};

class OutputDevice1: public DeviceBase {
public:

virtual void reset();
…

};

template<unsigned controlAddr, unsigned dataAddr>
class OutputDevice2: public DeviceBase {
public:

virtual void reset();
…

};

… // continued on next slide…

© 2014 Scott Meyers, all rights reserved.

Slide 160

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Hardware Indirectly

OutputDevice1 od1a(0xFFFF0000, 0xFFFF0004);
OutputDevice1 od1b(0xFFFF0010, 0xFFFF0014);
…
OutputDevice2<0xEEEE0000, 0xEEEE0010> od2a;
OutputDevice2<0xEEEE0020, 0xEEEE0040> od2b;
…

DeviceBase* registers[] = { &od1a, &od1b, …, &od2a, &od2b, … };

const std::size_t numRegisters = sizeof(registers)/sizeof(registers[0]);

…

for (std::size_t i =0; i < numRegisters; ++i) // reset all registers
registers[i]->reset(); // in system

© 2014 Scott Meyers, all rights reserved.

Slide 161

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Modeling Hardware Indirectly

Indirect modeling more expensive than direct modeling:

 Memory for “extra” data members (if present).

 Indirection to get from the object to the register(s) (if needed).

It’s also more flexible:

 May add other data members.

 May declare virtual functions.

© 2014 Scott Meyers, all rights reserved.

Slide 162

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

Classes that model hardware directly can easily be misused, e.g.:

 Clients might instantiate them at non-MMIO addresses.

 Clients who use placement new might think they need to call delete.
 They don’t, though they may need to manually call the destructor.

© 2014 Scott Meyers, all rights reserved.

Slide 163

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

To prevent such errors, consider declaring the destructor private:

class OutputDevice3 { // class modeling hardware
... // directly; prevents some

private: // kinds of client errors
~OutputDevice3() {}

ControlReg cr;
volatile unsigned data;

};

OutputDevice3 d; // error! implicit destructor
// invocation. (We want to
// prevent MMIO objects from
// being placed on the stack.)

OutputDevice3* pd =
new (reinterpret_cast<void*>(0xFFFF0000)) OutputDevice3; // fine

...
delete pd; // error! another implicit

// destructor invocation

© 2014 Scott Meyers, all rights reserved.

Slide 164

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

But if the destructor has work to do, clients must manually invoke it.

 This suggests that such classes need a public destructor:

class OutputDevice3 {
public:

~OutputDevice3();
...

};

OutputDevice3* pd =
new (reinterpret_cast<void*>(0xFFFF0000)) OutputDevice3;

...
pd->~OutputDevice3();

But we just decided that public destructors might lead to client errors...

© 2014 Scott Meyers, all rights reserved.

Slide 165

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

The proverbial additional level of indirection lets you have your cake and
eat it, too:

class OutputDevice3 {
public:

void destroy() { this->~OutputDevice3(); } // "this->" is required for
... // a correct parse

private:
~OutputDevice3() { ... }
...

};

OutputDevice3 d; // still an error

OutputDevice3* pd = // still
new (reinterpret_cast<void*>(0xFFFF0000)) OutputDevice3; // fine

...
delete pd; // still an error

pd->~OutputDevice3(); // error!

pd->destroy(); // fine

© 2014 Scott Meyers, all rights reserved.

Slide 166

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

Clients can still put MMIO devices at invalid addresses, but we can prevent
that, too. One way:

class InDevCtrlRegAddr { ... }; // classes representing
class OutDevCtrlRegAddr { ... }; // valid MMIO addresses
...

const OutDevCtrlRegAddr ODCRA1(0xFFFF0000); // an object for each
... // MMIO address

class OutputDevice {
public:

static void* operator new(std::size_t, // op. new taking
OutDevCtrlRegAddr); // only MMIO objs

...
};

OutputDevice& od = *new (ODCRA1) OutputDevice(params);

This can also eliminate the need for clients to do reinterpret_casts when
creating objects.

 But there must be a way to get a void* from an OutDevCtrlRegAddr
object.

© 2014 Scott Meyers, all rights reserved.

Slide 167

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The boxed code snippet (with two declarations for x) points to a depiction of the nested
scopes that explain why the inner x hides the outer x. The nested scopes to the right
correspond to how derived class operator news hide any other operator new declarations
at base class or global scope.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

Because class-specific operator news hide all other operator news, this also
prevents the creation of MMIO objects on the heap!

OutputDevice& od = *new OutputDevice(params); // error! op. new
// requires an
// OutDevCtrlRegAddr
// object

Basis:

 A name in
an inner
scope hides
that name in
an outer scope.

 Derived class
scopes are
nested inside
base class and
global scopes.

int x;

{

int x;

…

}

x

x

Class-specific Class
operator new scope
declarations

Standard Global
operator new scope
declarations

Derived class-specific Derived
operator new class
declarations scope

© 2014 Scott Meyers, all rights reserved.

Slide 168

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Likely Client Errors

Details of this approach are left as an exercise, but:

 A fundamental design goal is that design violations should not compile.

© 2014 Scott Meyers, all rights reserved.

Slide 169

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Generalizing via Templates

Devices are likely to vary in several ways:

 Number of bits in each register.

 Which bits correspond to ready and interrupt status, etc.

Templates make it easy to handle such variability:

template<typename RegType,
RegType ReadyBitMask,
RegType InterruptBitMask>

class ControlReg {
public:

bool ready() const { return regValue & ReadyBitMask; }
bool interruptsEnabled() const { return regValue & InterruptBitMask; }
void enableInterrupts() { regValue |= InterruptBitMask; }
void disableInterrupts() { regValue &= ~InterruptBitMask; }

private:
volatile RegType regValue;

};

© 2014 Scott Meyers, all rights reserved.

Slide 170

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Generalizing via Templates

// CRui03 is a control register the size of an unsigned int where
// bit 0 is the ready bit and bit 3 is the interrupt bit

typedef ControlReg<unsigned int, bit0, bit3> CRui03;

CRui03& cr1 = * new (reinterpret_cast<void*>(0xFFFF0000)) CRui03;

... // use cr1

// CRuc15 is a control register the size of an unsigned char where
// bit 1 is the ready bit and bit 5 is the interrupt bit

typedef ControlReg<unsigned char, bit1, bit5> CRuc15;

CRuc15& cr2 = * new (reinterpret_cast<void*>(0xFFFF0010)) CRuc15;

... // use cr2

© 2014 Scott Meyers, all rights reserved.

Slide 171

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Modeling Memory-Mapped IO

C++ tools you’ll probably want to use:

 Classes

 Class templates (with both type and non-type parameters)

 Inline functions

 Placement new and reinterpret_cast

 const pointers

 volatile memory

 References

 Private member functions, e.g., copy constructor, destructor.

© 2014 Scott Meyers, all rights reserved.

Slide 172

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 173

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Callbacks from C

APIs often support C callback functions, e.g.:

 Hardware interrupts ⇒ calls to ISRs in C.

 OS signals ⇒ calls to signal handlers in C.

 Application events ⇒ calls to event handlers in C.

Goal:

 Write the callbacks in C++.

 Preserve full flexibility:

Access to all C++ language features.

 Be able to create/configure/install/replace callbacks dynamically.

© 2014 Scott Meyers, all rights reserved.

Slide 174

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Callbacks from C

Callback details vary widely:

 Callback function parameters, e.g.:

void callbackFcn(); // no params

void callbackFcn(int eventID); // eventID only

void callbackFcn(int eventID, void *pEventData); // eventID + arbitrary
// user-defined data

Other parameter lists (types, number of parameters) are possible.

 Return types aren’t always void.

 Constraints on callback behavior:

 E.g., ISRs and signal handlers must be fast, safe to call
asynchronously, etc.

© 2014 Scott Meyers, all rights reserved.

Slide 175

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

ISRs as Example Callbacks

Our example is ISRs, but our focus is on design issues:

 Real ISR code is more complex:

May require special ISR calling conventions.

 Behavior often constrained:
 May require disabling other interrupts during execution.
 May safely manipulate only atomic volatile data.
 May have a hard real-time limit on execution time.

 We’ll ignore such details.

 They don’t affect the basic design options.

© 2014 Scott Meyers, all rights reserved.

Slide 176

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Example C Callback API

Assume this ISR API implemented in C:

typedef void (*ISR_t)(int); // param = interrupt ID

void setISR(int interruptID, ISR_t isr);

© 2014 Scott Meyers, all rights reserved.

Slide 177

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C-Like Function Pointers

Conceptually, two kinds of C++ function pointers can be passed to setISR:

 Non-member functions, e.g., global or namespace-scoped functions.

 Static member functions.

Reason: neither has a this pointer.

 Pointers to non-static member functions require a this pointer.

 They're not-layout compatible with "normal" function pointers.

Static member functions are preferable:

 Reduced namespace pollution: their names are local to their class.

 Encapsulation opportunities: they can be protected or private.

 Access privileges: they can access protected or private (static) members.

Our first goal is to use static member functions as callbacks.

© 2014 Scott Meyers, all rights reserved.

Slide 178

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C vs. C++ Linkage

Linkage can be an issue:

 C functions have C linkage.

 C++ functions have C linkage only if declared extern "C":

void f1(int); // non-member fcn: default C++ linkage

extern "C" void f2(int); // non-member fcn: explicit C linkage

class Widget {
public:

static void smf(int); // member fcn: always C++ linkage
};

For C++ compilation, ISR_t and setISR need C linkage, so:

extern "C" { // use C calling conventions
typedef void (*ISR_t)(int);
void setISR(int interruptID, ISR_t isr);

}

© 2014 Scott Meyers, all rights reserved.

Slide 179

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C vs. C++ Linkage

Compilers may treat C and C++ linkage differently:

setISR(0, &f1); // may or may not compile/link/run
setISR(1, &Widget::smf); // ditto

setISR(2, &f2); // typically compiles/links/runs

In general, only non-member extern "C" functions are valid C callbacks.

 Even then only for compatible C and C++ object code.

 There is no standard ABI for C or C++ linkage.

© 2014 Scott Meyers, all rights reserved.

Slide 180

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Static Member Functions as Callbacks

The non-member can make an inline call to a static member function:

class InterruptMgr {
public:

…
static void isr(int interruptID) // effective ISR
{ code to handle interrupt; }

};

extern "C" {
void isrHelper(int interruptID) // function to pass to C API
{ InterruptMgr::isr(interruptID); } // inline call to effective ISR

}

setISR(0, &isrHelper); // install callback

On some platforms, the non-member function can be omitted:

 On such platforms, C and C++ linkage are the same.

setISR(0, &InterruptMgr::isr); // works on some platforms

© 2014 Scott Meyers, all rights reserved.

Slide 181

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Static Member Functions as Callbacks

The static member function usually calls another function to actually
service the interrupt, so a better function name is advisable:

class InterruptMgr {
public:

…
static void isrDispatcher(int interruptID)
{ invoke function to handle interrupt; }

};

extern "C" {
void isrHelper(int interruptID)
{ InterruptMgr::isrDispatcher(interruptID); }

}

setISR(0, &isrHelper); // as before

© 2014 Scott Meyers, all rights reserved.

Slide 182

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Preventing Exception Propagation into C

Exceptions thrown from C++ must not propagate into C.

 C stack frames may be laid out differently from C++ stack frames!

If callback code can throw, prevent exception propagation, e.g.:

extern "C" {
void isrHelper(int interruptID) // function to pass to C API
{

try {
InterruptMgr::isrDispatcher(interruptID);

}
catch (…) {

set errno, log exception, whatever….
}

}
}

A try block may incur a runtime cost:

 A preferable design may be to ban exceptions in callback code.

© 2014 Scott Meyers, all rights reserved.

Slide 183

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Basic Callback-Handling Strategy

isrHelper(iid)

InterruptMgr::isrDispatcher(iid)

ISR1

ISR2

ISR4

ISR5

ISR3

calls

calls
through

calls (passing iid)

HW/OS World (Uses C) ISR World (Uses C++)

Interrupt
Vector
Table

InterruptMgr::ISRs

© 2014 Scott Meyers, all rights reserved.

Slide 184

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The Basic Callback-Handling Strategy

InterruptMgr typically works like this:

class InterruptMgr {
public:

typedef ??? ISRType; // details in a moment
…
static void registerISR(int interruptID, ISRType isr)
{ ISRs[interruptID] = isr; }

static void isrDispatcher(int interruptID)
{ call ISRsinterruptID; } // details in a moment

private:
static ISRType ISRs[NUM_INTERRUPTS]; // decl. arr. of actual ISRs

};

InterruptMgr::ISRType // define array of actual
InterruptMgr::ISRs[NUM_INTERRUPTS]; // ISRs

The ISRs array mimics the system’s interrupt vector table.

 But we can make it an array of anything in C++:

 It could hold objects, pointers to objects, member func. ptrs., etc.

We’re now in the world of C++.

© 2014 Scott Meyers, all rights reserved.

Slide 185

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via Virtual Functions

Create a base class for objects that handle interrupts:

class ISRBase { // classes implementing ISRs
public: // inherit from this

…
virtual void isr(int interruptID) = 0; // or maybe operator()(int)

};

InterruptMgr can then look like this:

class InterruptMgr {
public:

typedef ISRBase* ISRType;
…
static void registerISR(int interruptID, ISRType isr) { … }

static void isrDispatcher(int interruptID)
{

ISRs[interruptID]->isr(interruptID); // invoke ISR via virtual call
}

private:
static ISRType ISRs[NUM_INTERRUPTS]; // array of ptrs to objects w/ISRs

};

© 2014 Scott Meyers, all rights reserved.

Slide 186

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via Virtual Functions

Derived classes provide actual ISRs:

class TimerISR: public ISRBase { class KeyboardISR: public ISRBase {
public: public:

… …
virtual void isr(int interruptID); virtual void isr(int interruptID);

}; };

Objects of these types are then created and registered:

TimerISR t;
KeyboardISR k;

InterruptMgr::registerISR(TIMER_INT_NUM, &t);

InterruptMgr::registerISR(KEYBOARD_INT_NUM, &k);

Result:

 Interrupt number TIMER_INT_NUM is handled by t.isr.

 Interrupt number KEYBOARD_INT_NUM is handled by k.isr.

© 2014 Scott Meyers, all rights reserved.

Slide 187

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via Virtual Functions

Consider what happens when a timer interrupt occurs:

1. C API calls non-member function isrHelper.

2. isrHelper calls static member function InterruptMgr::isrDispatcher.

3. InterruptMgr::isrDispatcher calls member function
ISRs[TIMER_INT_NUM]->isr.

 This virtual call resolves to t.isr (i.e., TimerISR::isr on t).

InterruptMgr::isrDispatcher is inline, so at runtime we expect:

1. C API calls isrHelper.

2. isrHelper calls t.isr via vtbl.

Similarly, when a keyboard interrupt occurs:

1. C API calls isrHelper.

2. isrHelper calls k.isr via vtbl.

© 2014 Scott Meyers, all rights reserved.

Slide 188

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Assessment: Using Virtual Functions

Advantages:

 Clear, clean, “object-oriented” solution.

 Heap objects are allowed, but not required.

Note that t and k could be globals, namespace-local, or file static.

Disadvantages:

 Must introduce a base class and virtual functions.

Virtual functions ⇒ vtbl.

 Base class may exist only to support callbacks.
 Can lead to many small “interface” classes (and the files they’re in).

 Actual ISRs must be non-static member functions.

Even if static member functions or non-members would do.
 Of course, the non-static member functions could call them.

 Actual ISRs must have the same signature (including constness).
Modulo covariant return types….

© 2014 Scott Meyers, all rights reserved.

Slide 189

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function and std::bind

Functionality present in C++11 and TR1.

 std::function: generalized function pointer; holds any callable entity.

 std::bind: creates function objects holding callable entities and some
parameter values.

Can do more, but this suffices here.

Result often stored in a std::function object.

TR1 versions are in a nested namespace:

 std::function ⇒ std::tr1::function.

 std::bind ⇒ std::tr1::bind.

© 2014 Scott Meyers, all rights reserved.

Slide 190

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Function Types and std::function

A function’s type is its declaration w/o any names:

void f1(int x); // type is void(int)

double f2(int x, std::string& s); // type is double(int, std::string&)

std::function’s template parameter specifies its target function type:

std::function<void(int)> func; // func can hold any callable entity
// compatible with the type void(int)

© 2014 Scott Meyers, all rights reserved.

Slide 191

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function

Changes to InterruptMgr are small:

class InterruptMgr {
public:

typedef std::function<void(int)> ISRType;
…
static void registerISR(int interruptID, const ISRType& isr) { … }

static void isrDispatcher(int interruptID)
{

ISRsinterruptID; // note lack of “->isr”; function
} // call syntax is used instead

private:
static ISRType ISRs[NUM_INTERRUPTS]; // array of std::function objects

};

An ISRType object:

 Holds anything callable with an int and returning anything.
 It’s a generalized function pointer.

 Is invoked using function syntax.

E.g., inside InterruptMgr::isrDispatcher.

© 2014 Scott Meyers, all rights reserved.

Slide 192

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function

TimerISR and KeyboardISR are unchanged, except:

 They have no base class.

 ISRBase is no longer necessary.

 The isr functions need not be virtual.

 Their signatures (e.g., constness) need not be identical, either.

class TimerISR { // no base class
public:

…
void isr(int interruptID); // nonvirtual function (non-const)

};

class KeyboardISR { // no base class
public:

…
void isr(int interruptID) const; // nonvirtual function (const)

};

© 2014 Scott Meyers, all rights reserved.

Slide 193

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The call to bind on this page won’t compile as shown unless std::placeholders::_1 has been
made visible (e.g., via a using declaration). This is virtually always done in code that uses
bind.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function and std::bind

To register an ISR with InterruptMgr, we create a function object that holds:

 The ISR member function.

 The object on which that function should be invoked.

TimerISR t; // as before
KeyboardISR k;

// on a timer interrupt, call t.isr
InterruptMgr::registerISR(TIMER_INT_NUM,

std::bind(&TimerISR::isr, &t, _1));

// on a keyboard interrupt, call k.isr
InterruptMgr::registerISR(KEYBOARD_INT_NUM,

std::bind(&KeyboardISR::isr, &k, _1));

 Details on bind coming soon.

© 2014 Scott Meyers, all rights reserved.

Slide 194

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function and std::bind

Consider what happens when a timer interrupt occurs:

1. As before, C API calls isrHelper.

2. As before, isrHelper calls InterruptMgr::isrDispatcher.

3. InterruptMgr::isrDispatcher calls member function held by std::function
object ISRs[TIMER_INT_NUM].

 This call resolves to t.isr via member function pointer.

InterruptMgr::isrDispatcher is still inline, so at runtime we expect:

1. C API calls isrHelper.

2. isrHelper calls t.isr via member function pointer.

Similarly, when a keyboard interrupt occurs:

1. C API calls isrHelper.

2. isrHelper calls k.isr via member function pointer.

© 2014 Scott Meyers, all rights reserved.

Slide 195

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The call to bind on this page won’t compile as shown unless std::placeholders::_1 has been
made visible (e.g., via a using declaration). This is virtually always done in code that uses
bind.

The diagram is conceptual rather than rigorously accurate. In particular, it fails to show
how pbf contains a copy of the object produced by bind, depicting instead that what’s
inside that bind-produced object is inside pbf. There is no return value shown in the
diagram, because pbf’s signature has a void return type.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Details on std::bind

void f(int x, int y); // function to ultimately call

std::function<void(int)> pbf = // pbf = “partially bound f”;
std::bind(f, 10, _1); // f’s x param set to 10

…

pbf(20); // same as f(10, 20)

Note that pbf is called like a function.

pbf

function f

x 10

y

_1

© 2014 Scott Meyers, all rights reserved.

Slide 196

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Details on std::bind

When binding non-static member functions, *this object is parameter #1:

class TimerISR { // as before
public:

…
void isr(int interruptID); // std::bind sees two params:

}; // *this is #1, interruptID is #2

So

std::bind(&TimerISR::isr, &t, _1)

yields:

bind’s return value

function TimerISR::isr

this &t

interruptID

_1

© 2014 Scott Meyers, all rights reserved.

Slide 197

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The calls to bind on this page won’t compile as shown unless std::placeholders::_1 has
been made visible (e.g., via a using declaration). This is virtually always done in code that
uses bind.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Callbacks via std::function and std::bind

Hence:

TimerISR t; // as before
KeyboardISR k;

InterruptMgr::registerISR(TIMER_INT_NUM,
std::bind(&TimerISR::isr, &t, _1));

InterruptMgr::registerISR(KEYBOARD_INT_NUM,
std::bind(&KeyboardISR::isr, &k, _1));

bind’s return value

function KeyboardISR::isr

this &k

interruptID

_1

bind’s return value

function KeyboardISR::isr

this &k

interruptID

_1

bind’s return value

function TimerISR::isr

this &t

interruptID

_1

bind’s return value

function TimerISR::isr

this &t

interruptID

_1

bind’s return value

function TimerISR::isr

this &t

interruptID

_1

© 2014 Scott Meyers, all rights reserved.

Slide 198

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Flexibility in std::function

std::function works with static member functions and with non-member
functions, too:

void handleKbdInt(int interruptID); // non-member function

InterruptMgr::registerISR(KEYBOARD_INT_NUM,
&handleKbdInt);

Any compatible signature is allowed – an exact match is not required:

class Timer {
public:

…
static void onInterrupt(long interruptID); // static mem. func. w/

}; // long param (not int)

InterruptMgr::registerISR(TIMER_INT_NUM,
&Timer::onInterrupt); // okay

© 2014 Scott Meyers, all rights reserved.

Slide 199

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Assessment: Using std::function and std::bind

Advantages:

 No need for user-defined base classes or virtual functions.

 Callbacks may be

 Function objects:
 E.g., bound non-static member functions produced by std::bind

 Static member functions

Non-member functions

 Callback signatures need only be compatible with a target signature.

© 2014 Scott Meyers, all rights reserved.

Slide 200

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Assessment: Using std::function and std::bind

Disadvantages:

 C++11 and TR1 implementations common, but not ubiquitous.

 Some compilers ship with none of TR1 or C++11.
 Open-source and commercial versions of bind and function exist.

 Some developers unfamiliar with TR1 components.

 std::function objects have costs:

 They may allocate heap memory.

 Some implementations may use virtual functions.

© 2014 Scott Meyers, all rights reserved.

Slide 201

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

These numbers correspond to experiments I performed in June 2012. Regarding “Average
of 5 trials,” a “trial” is a program run that performs 999,99,999 callbacks. (I don’t remember
why I chose that number, sorry.)

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

(Simple) Performance Comparison

 Virtuals notably slower than non-members.

 Performance using std::function varies with libraries and compilers.
As little as 50% slower, as much as 140% slower.

© 2014 Scott Meyers, all rights reserved.

Slide 202

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

(Simple) Performance Comparison

Benchmark setup:

 Lenovo W510 laptop (Intel quad-core Core i7, 4GB RAM, Win64)

 Do-nothing callbacks, i.e., empty bodies.

Only callback overhead was measured.
 Callback execution often – typically? – swamps calling overhead.

 Maximum compiler optimizations enabled.

 All language features enabled.

 Embedded developers often disable EH and RTTI.

If performance is important to you, do your own tests.

 And let me know what you find out….

© 2014 Scott Meyers, all rights reserved.

Slide 203

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

When User Data is Part of the Callback

Some callbacks are passed arbitrary user data, e.g.,:

extern "C" {

typedef void (*ISR_t)(int, void *pData); // callback APIs
void setISR(int interruptID, ISR_t isr, void *pData); // may be like this

}

This change in signature propagates:

extern "C" {

void isrHelper(int interruptID, void *pData)
{

try {
InterruptMgr::isrDispatcher(interruptID, pData);

}
catch (…) {

set errno, log exception, whatever….
}

}

}

© 2014 Scott Meyers, all rights reserved.

Slide 204

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Note that whatever pFunc points to when passed to registerISR must continue to exist
when isrDispatcher invokes it. That is, the lifetime of the functor passed to registerISR

must extend to the last time isrDispatcher will invoke that functor. Among other things,
this means that pointers to temporaries must not be passed to registerISR.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

When User Data is Part of the Callback

InterruptMgr’s ISRs array can then be eliminated.

 The user data is the function pointer or object to be invoked:

class InterruptMgr {
public:

typedef std::function<void(int)> ISRType;
…
static void registerISR(int interruptID, ISRType *pFunc)
{

setISR(interruptID, isrHelper, pFunc);
}

static void isrDispatcher(int interruptID, void *pFunc)
{

(*static_cast<ISRType*>(pFunc))(interruptID);
}

};

© 2014 Scott Meyers, all rights reserved.

Slide 205

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The call to bind on this page won’t compile as shown unless std::placeholders::_1 has been
made visible (e.g., via a using declaration). This is virtually always done in code that uses
bind.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

When User Data is Part of the Callback

Sample client code:

InterruptMgr::ISRType f(std::bind(&TimerISR::isr, &t, _1));

InterruptMgr::registerISR(TIMER_INT_NUM, &f);

© 2014 Scott Meyers, all rights reserved.

Slide 206

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Implementing Callbacks from C

 C API callbacks in C++ can't be to non-static member functions.

 Some platforms allow calls to static member functions.

 Some support only callbacks to non-members declared extern "C".

 2 basic approaches to getting into member functions:

Virtual functions.

 std::function objects.

 Approaches vary in several ways:

Need to declare base classes and virtual functions.

Whether non-member functions are directly supported.

Whether callback signatures may vary.

Use of “non-standard” features (i.e., TR1 or C++11 components).

Use of heap memory and/or vtbls.

 Invocation speed.

© 2014 Scott Meyers, all rights reserved.

Slide 207

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Among other things, C++11 versions of function and shared_ptr offer allocator support not
present in TR1, and tuples in C++11 offer concatenation functions (tuple_cat) not in TR1.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

TR1

 Standard C++ Committee Library “Technical Report 1.”

 Basis for new library functionality in C++11.

 TR1 functionality is in namespace std::tr1.

 TR1-like functionality in C++11 is in std.

 Such functionality not identical to that in TR1.
 Uses new C++11 language features.
 Tweaks APIs based on experience with TR1.

Calling interfaces largely backwards compatible
 C++11 primarily offers “enhanced” TR1 functionality

© 2014 Scott Meyers, all rights reserved.

Slide 208

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Regarding random numbers, C supports only rand, which is expected to produce a
uniform distributions. TR1 supports both “engines” and “distributions.” An engine
produces a uniform distribution, while a distribution takes the result of an engine and
produces an arbitrary distribution from it. TR1 specifies default versions for the engine
and distributions, but it also allows for customized-versions of both.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

TR1 Summary
New Functionality Summary

Reference Wrapper Objects that act like references

Smart Pointers Reference-counting smart pointers

Getting Function Object Return Types Useful for template programming

Enhanced Member Pointer Adapter 2nd-generation mem_fun/mem_fun_ref

Enhanced Binder 2nd-generation bind1st/bind2nd

Generalized Functors Generalization of function pointers

Type Traits Compile-time type reflection

Random Numbers Supports customizable distributions

Mathematical Special Functions Laguerre polynomials, beta function, etc.

Tuples Generalization of pair

Fixed Size Array Like vector, but no dynamic allocation

Hash Tables Hash table-based set/multiset/map/multimap

Regular Expressions Generalized regex searches/replacements

C99 Compatibility 64-bit ints, <cstdint>, new format specs, etc.

© 2012 Scott Meyers, all rights reserved.

Slide 209

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

TR1 Itself

TR1 is a specification:

 Aimed at implementers, not users.

 Lacks background, motivation, rationale for functionality it specifies.

 Doesn’t stand on its own.

 E.g., assumes information in C++03.

© 2014 Scott Meyers, all rights reserved.

Slide 210

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

[It’s a good idea to have a an open browser window showing the web page depicted here
so that you can click on the links.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Understanding TR1

To understand the functionality in TR1:

 Consult the Further Information.

 Look at the extension proposals.

 Links are available at Scott Meyers’ TR1 Information web page,
http://www.aristeia.com/EC3E/TR1_info.html.

© 2014 Scott Meyers, all rights reserved.

Slide 211

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

What is Boost?

 A volunteer organization and a web site (boost.org).

 A repository for C++ libraries that are

Open-source

 Portable

 Peer-reviewed

Available under a “non-viral” license.

 A place to try out prospective standard C++ library enhancements.

© 2014 Scott Meyers, all rights reserved.

Slide 212

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

10 of 14 libraries in TR1 are modeled on Boost libraries.

Libraries missing from the VC9 TR1 update are mathematical special functions and C99
compatibility. The same is true in VC10-11.

Using Boost instead of native library implementations is a way to reduce variability (e.g.,
in implementation and performance) across platforms.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Boost and TR1

Boost motivated most of and implements all of TR1:

 Boost libraries are executable, TR1 isn’t.

Other full or partial TR1 implementations are available:

 Microsoft:

 12/14 libs included in VC++ 2010-11 (VC10-11).

C++11 versions ship with VC++ 2011.

 Dinkumware: full TR1 impls for selected platforms.

 Gnu: 10/14 libs ship with gcc 4.

© 2014 Scott Meyers, all rights reserved.

Slide 213

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

[This is a good time to show attendees the Boost web site, if time allows.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

TR1 and Boost

Boost ≠ TR1:

 Boost offers much more functionality than in TR1.

 Libraries rarely consider embedded issues.
 But performance always a concern.

 Boost APIs don’t always match corresponding TR1 APIs.

 E.g., Bind and Tuple have some namespace “issues”.

 Other TR1 implementations may differ from Boost implementations.

 TR1 specifies interfaces, not implementations.

© 2014 Scott Meyers, all rights reserved.

Slide 214

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Boost/TR1 Summary

 TR1 is a specification for standard library functionality beyond C++03.

 Boost is the premier repository of open-source, portable, peer-
reviewed C++ libraries.

 Much TR1 functionality is available from Boost and others.

 Boost offers many non-TR1 libraries, too.

© 2014 Scott Meyers, all rights reserved.

Slide 215

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 216

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Using Templates to Eliminate Common Casts

Consider a Stack class template:

template<typename T>
class Stack {
public:

Stack();
~Stack();
void push(const T& object);
T pop();

private:
...

};

Each different type will yield a new class:

 This could result in a lot of duplicated code.

 You may not be able to afford such code bloat.

© 2014 Scott Meyers, all rights reserved.

Slide 217

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

A Generic Stack Class for Pointers

A class using void* pointers can implement any kind of (pointer) stack:

class GenericPtrStack {
public:

GenericPtrStack();
~GenericPtrStack();

void push(void *object);
void * pop();

private:
...

};

© 2014 Scott Meyers, all rights reserved.

Slide 218

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

A Generic Stack Class for Pointers

GenericPtrStack is good for sharing code:

GenericPtrStack stringPtrStack;
GenericPtrStack intPtrStack;

std::string *newString = new std::string;
int *newInt = new int;

stringPtrStack.push(newString); // these execute
intPtrStack.push(newInt); // the same code

But it’s easy to misuse:

stringPtrStack.push(newInt); // uh oh...

std::string *sp =
static_cast<std::string*>(intPtrStack.pop()); // uh oh (reprise)...

Code-sharing is important, but so is type-safety:

 We want both.

© 2014 Scott Meyers, all rights reserved.

Slide 219

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Type-Safe Interfaces

We can partially specialize Stack to generate type-safe void*-based classes:

template<typename T>
class Stack<T*> {
public:

void push(T *ptr) { s.push(ptr); }

T * pop() { return static_cast<T*>(s.pop()); }

private:
GenericPtrStack s; // implementation

};

At runtime, the cost of Stack<T*> instantiations is zero:

 All instantiations use the code of the single GenericPtrStack class

 All Stack<T*> member functions are implicitly inline

The cost of type-safety is nothing.

© 2014 Scott Meyers, all rights reserved.

Slide 220

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Type-Safe Interfaces

How force programmers to use the type-safe classes only?

Prevent direct use of GenericPtrStack by making everything protected:

class GenericPtrStack {
protected:

GenericPtrStack();
~GenericPtrStack();

void push(void *object);
void * pop();

private:
... // same as before

};

GenericPtrStack stringStack; // error!
GenericPtrStack intStack; // error!

© 2014 Scott Meyers, all rights reserved.

Slide 221

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Type-Safe Interfaces

But now Stack<T*> won’t compile:

template<typename T>
class Stack<T*> {
public:

void push(T *ptr)
{ s.push(ptr); } // error! GenericPtrStack::push

// is protected
...

private:
GenericPtrStack s;

};

© 2014 Scott Meyers, all rights reserved.

Slide 222

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Type-Safe Interfaces

Private inheritance gives access to protected members:

template<typename T>
class Stack<T*>: private GenericPtrStack {
public:

void push(T *objectPtr)
{ GenericPtrStack::push(objectPtr); }

T * pop()
{ return static_cast<T*>(GenericPtrStack::pop()); }

};

Net result:

 Maximal type safety

 Maximal efficiency

How did we get here?

 void* Pointers Templates Private Inheritance

 Inlining Protected Members

© 2012 Scott Meyers, all rights reserved.

Slide 223

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

QOI = “Quality of Implementation”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Code Bloat, Containers of Pointers, and QOI

Your C++ implementation may spare you the need to do this kind of thing:

 Some standard library vendors take care of this for you.

 Some compiler vendors (e.g., Microsoft) eliminate replicated code
arising from template instantiations.

Approach applies to more than just containers of pointers.
 Also optimizes Template<int> and Template<long> when int and

long are the same size.

Before looking for ways to manually eliminate code bloat, make sure it’s
really an issue.

© 2014 Scott Meyers, all rights reserved.

Slide 224

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Eliminating Common Casts

 Templates can generate type-safe wrappers around type-unsafe code.

 Inlining wrapper member functions can eliminate any runtime cost.

 Careful implementation choices can enforce design objectives.

© 2014 Scott Meyers, all rights reserved.

Slide 225

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

From http://en.wikipedia.org/wiki/Mars_Climate_Orbiter#The_metric_mixup: “The metric
mixup which destroyed the craft was caused by a software error. The software was used to
control thrusters on the spacecraft which were intended to control its rate of rotation, but
by using the wrong units, the ground station underestimated the effect of the thrusters by
a factor of 4.45. This is the difference between a pound force - the imperial unit - and a
newton, the metric unit.”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Proper unit use is crucial:

 Nonsensical to assign or compare time to distance.

 Nonsensical to assign or compare pounds to newtons.

 1.00 pounds ≅ 4.45 newtons.

Loss of NASA’s Mars Climate Orbiter, September 1999.

© 2014 Scott Meyers, all rights reserved.

Slide 226

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Alas, most software ignores units:

double t; // time - in seconds

double a; // acceleration - in meters/sec2

double d; // distance - in meters

...

std::cout << d/(t*t) - a; // okay, subtracts meters/sec2

std::cout << d/t - a; // nonsensical, but compiles

© 2014 Scott Meyers, all rights reserved.

Slide 227

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Typedefs just disguise the problem:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

Time t;
Acceleration a;
Distance d;

...

std::cout << d/t - a; // still nonsensical, still compiles

Goal: use the C++ type system to:

 Detect unit compatibility errors during compilation.

 Incur minimal runtime performance impact.

© 2014 Scott Meyers, all rights reserved.

Slide 228

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Observations:

 Dimensional types are determined by dimension exponents:

Velocity = distance1/time1 = distance1 * time-1

Acceleration = distance1/time2 = distance1 * time-2

 Time = distance0 * time1

 Each combination of exponents should be a different type.

 In principle, the number of combinations is unlimited.

 Templates generate types.

© 2014 Scott Meyers, all rights reserved.

Slide 229

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The highlighting of val is to show that the template is just wrapping a double.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

template< int m, // exponent for mass
int d, // exponent for distance
int t> // exponent for time

class Units {
public:

explicit Units(double initVal = 0): val(initVal) {}

double value() const { return val; }
...

private:
double val;

};

Now we can say:

Units<1, 0, 0> m; // m is of type mass
Units<0, 1, 0> d; // d is of type distance
Units<0, 0, 1> t; // t is of type time

m = t; // error! type mismatch

© 2014 Scott Meyers, all rights reserved.

Slide 230

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Adding typedefs for Cosmetic Purposes

Typedefs can hide the ugly type names:

typedef Units<1, 0, 0> Mass;
typedef Units<0, 1, 0> Distance;
typedef Units<0, 0, 1> Time;

Mass m;
Distance d;
Time t;

m = t; // still an error

© 2014 Scott Meyers, all rights reserved.

Slide 231

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Arithmetic operations on these kinds of types are important, so we can
augment Units as follows:

template<int m, int d, int t>
class Units {
public:

... // as before

Units<m, d, t>& operator+=(const Units<m, d, t>& rhs)
{

val += rhs.val;
return *this;

}

Units<m, d, t>& operator*=(double rhs)
{

val *= rhs;
return *this;

}

...
};

Operators for subtraction and division are analogous.

© 2014 Scott Meyers, all rights reserved.

Slide 232

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Non-assignment operators are best implemented as non-members:

template<int m, int d, int t>
Units<m, d, t> operator+(const Units<m, d, t>& lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(lhs);
return result += rhs;

}

template<int m, int d, int t>
Units<m, d, t> operator*(double lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(rhs);
return result *= lhs;

}

template<int m, int d, int t>
Units<m, d, t> operator*(const Units<m, d, t>& lhs,

double rhs)
{

Units<m, d, t> result(lhs);
return result *= rhs;

}

operator- and operator/ are defined analogously.

© 2014 Scott Meyers, all rights reserved.

Slide 233

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The term “pound” is used for both mass and force. As a unit of mass, it’s more formally
known as “Avoirdupois pound.” As a unit of force, it’s more formally known as “pound-
force.” Both are sometimes abbreviated as “lb”.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Creating Typed Values

Useful (typed) constants from the SI system:

const Mass kilogram(1); // in each case, the internal
const Distance meter(1); // double is set to 1.0
const Time second(1);

Other useful (typed) constants are easy to define:

const Mass pound(kilogram/2.2); // Avoirdupois pound

const Time minute(60 * second);

const Distance inch(.0254 * meter);

As are variables:

int rawLength; // untyped length from outside
std::cin >> rawLength; // source, known to be in inches

Distance length(rawLength * inch); // typed length

© 2014 Scott Meyers, all rights reserved.

Slide 234

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

The real fun comes when multiplying/dividing Units:

template<int m1, int d1, int t1,
int m2, int d2, int t2>

Units<m1+m2, d1+d2, t1+t2>
operator*(const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1+m2, d1+d2, t1+t2> ResultType;

return ResultType(lhs.value() * rhs.value());
}

template<int m1, int d1, int t1,
int m2, int d2, int t2>

Units<m1-m2, d1-d2, t1-t2>
operator/(const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1-m2, d1-d2, t1-t2> ResultType;

return ResultType(lhs.value() / rhs.value());
}

© 2014 Scott Meyers, all rights reserved.

Slide 235

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

Real implementations typically use more template arguments for Units:

 One specifies the precision of the value (typically float or double)

 The others are for the exponents of the seven SI units:

Mass

Distance

 Time

Current

 Temperature

 Luminous intensity

Amount of substance

© 2014 Scott Meyers, all rights reserved.

Slide 236

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Enforcing Dimensional Unit Correctness

template<class T, int m, int d, int t, int q, int k, int i, int a>
class Units {
public:

explicit Units(T initVal = 0) : val(initVal) {}
T& value() { return val; }
const T& value() const { return val; }
...

private:
T val;

};

template<class T, int m1, int d1, int t1, int q1, int k1, int i1, int a1,
int m2, int d2, int t2, int q2, int k2, int i2, int a2>

Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
operator*(const Units<T, m1, d1, t1, q1, k1, i1, a1>& lhs,

const Units<T, m2, d2, t2, q2, k2, i2, a2>& rhs)
{

typedef Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
ResultType;

return ResultType(lhs.value() * rhs.value());
}

© 2014 Scott Meyers, all rights reserved.

Slide 237

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

If partial template specialization is unavailable, you can totally specialize for e.g., T =

double and/or T = float.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Dimensionless Quantities

Dimensionless quantities (i.e., objects of type Units<T,0,0,0,0,0,0,0>)
should be type-compatible with unitless types (e.g., int, double, etc.).

 Partial template specialization can help:

template<typename T>
class Units<T, 0, 0, 0, 0, 0, 0, 0> {
public:

...
Units(T initVal = 0): val(initVal) {} // allow implicit conversion
operator T() const { return val; } // to/from values of type T

Units& operator=(T newVal) // allow assignments from
{ val = newVal; return *this; } // values of type T
...

private:
T val;

};

© 2014 Scott Meyers, all rights reserved.

Slide 238

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The “Idea” sketched on this slide and the next is just that. I have not implemented it, so
there may be problems I have not anticipated.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Efficiency

Some compilers won’t put objects in registers:

 A Units<double, ...> may yield worse code than a raw double.

Idea:

 Two sets of headers, a checking set and a no-op set.

Both provide typedefs for all named unit types.

Checking header uses Units template, non-checking header doesn’t:

// checking header // no-op header
template<…> typedef double UnitPrecision;
class Units {

…
};

typedef Units<...> Mass; typedef UnitPrecision Mass;
typedef Units<...> Distance; typedef UnitPrecision Distance;
typedef Units<...> Velocity; typedef UnitPrecision Velocity;
typedef Units<...> Force; typedef UnitPrecision Force;
... ...

© 2014 Scott Meyers, all rights reserved.

Slide 239

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

ODR = “One Definition Rule”.

If the three versions of computeValue are compiled separately with the checking headers
and linked with object file compiled with the unchecked headers, the system will have an
inconsistent definition of computeValue.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Efficiency

 Choose header set at build time.

Using checking headers catches all errors.

Using no-op headers generates optimal code.

 Clean compilation with checking headers ⇒ no unit errors:

No-op headers can then safely be used.

 E.g., velocity-acceleration errors can’t exist in code.

Caveats:

 Overloading on unit types could be problematic:

double computeValue(Mass m); // 3 functions with
double computeValue(Distance d); // checking headers,
double computeValue(double d); // only 1 with typedefs

Could lead to undefined behavior via ODR violation.

© 2014 Scott Meyers, all rights reserved.

Slide 240

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Industrial-Strength Dimensional Analysis

State-of-the-art implementations more sophisticated than what I’ve shown:

 Allow fractional exponents (e.g., distance1/2)

 Support multiple unit systems (beyond just SI)

 Use template metaprogramming for compile-time computation.

 E.g., to compute GCDs when reducing fractional exponents.
 distance1/2 = distance4/8

© 2014 Scott Meyers, all rights reserved.

Slide 241

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Everything on this slide is from Walter E. Brown’s paper, which is referenced in the
“Further Information” slides at the end of the notes.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Industrial-Strength Dimensional Analysis

It can determine whether this “simple” formula,

is correctly modeled by this C++:

Energy<> finalEnergy(Element<> const & material, Density<> const dens,
Length<> const thick, Energy<> const initEnergy) {

AtomicWeight<> const A = material->atomicWeight;
AtomicNumber<> const Z = material->atomicNumber;

Number<> const L_rad = log(184.15 / root<3>(Z));
Number<> const Lp_rad = log(1194. / root<3>(Z*Z));

Length<> const X_0 = 4.0 * alpha * r_e * r_e * N_A / A *
(Z * Z * L_rad + Z * Lp_rad);

return initEnergy / exp(thick / X_0);
}

(It’s not. There are three dimensional type errors.)

© 2014 Scott Meyers, all rights reserved.

Slide 242

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Not Quite Foolproof

Some unit combinations correspond to more than one physical quantity.

 Energy and torque both correspond to Distance * Force.

Our approach can’t tell them apart:

typedef Units<1, 2, -2> Energy;
typedef Units<1, 2, -2> Torque;

Energy e;
Torque t;

…

e = t; // nonsensical, but will compile

© 2014 Scott Meyers, all rights reserved.

Slide 243

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Enforcing Dimensional Unit Correctness

 Templates can be used to add new kinds of type safety.

 Non-type template parameters are both powerful and useful.

 Templates can add type safety to code with little or no runtime penalty

© 2014 Scott Meyers, all rights reserved.

Slide 244

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The legal folks at Pearson require that I note that the FSA diagram and FSA table in this
section of the notes is adapted from Abrahams/Gurtovoy, C++ TEMPLATE
METAPROGRAMMG: CONCEPTS TOOLS & TECHNIQUES FROM BOOST AND
BEYOND, 2005 Pearson Education, Inc. and is used with permission of Pearson Education,
Inc.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Consider this FSM (Finite State Machine) for a CD player:

Taken (as is the entire FSM example) from Abrahams' and
Gurtovoy's C++ Template Metaprogramming.

 Full citation in Further Information.

 I’ve modified their material slightly for presentation.

Specifying FSMs

Empty Stopped

Open
Paused

CD detected

Playing

© 2014 Scott Meyers, all rights reserved.

Slide 245

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSMs

Here's a table version that also shows transition actions:

Current State Event Next State Transition Action

Empty Open/Close Open Open drawer

Empty CD-Detected Stopped Store CD info

Stopped Play Playing Start playback

Stopped Open/Close Open Open Drawer

Open Open/Close Empty Close drawer; collect CD info

Paused Play Playing Resume playback

Paused Stop Stopped Stop playback

Paused Open/Close Open Stop playback; open drawer

Playing Stop Stopped Stop playback

Playing Pause Paused Pause playback

Playing Open/Close Open Stop playback; open drawer

o
p
e
n
/c

lo
se

Empty Stopped

Open
Paused

o
p
e
n
/c

lo
se

CD detected

open/cl
ose

open/close

open/close

st
o
p

playpause

p
la

y

s
to

p

Playing

o
p
e
n
/c

lo
se

Empty Stopped

Open
Paused

o
p
e
n
/c

lo
se

CD detected

open/cl
ose

open/close

open/close

st
o
p

playpause

p
la

y

s
to

p

Playing

© 2014 Scott Meyers, all rights reserved.

Slide 246

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Domain-Specific Embedded Languages

Both diagram and table are declarative specifications of FSMs.

 They specify what should happen, not how.

TMP makes it possible for such specifications to be given in C++.

 Via Domain-Specific Embedded Languages (DSELs).

Domain-specific languages embedded within C++.

 With DSELs, specifications are programs.

© 2014 Scott Meyers, all rights reserved.

Slide 247

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The FSM DSEL

For the FSM DSEL,

 Clients specify:

 States

 Events

 Transitions

 Transition actions

The compiler generates the FSM code automatically.

 Via template instantiation.

© 2014 Scott Meyers, all rights reserved.

Slide 248

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The FSM DSEL

In this presentation we examine only the DSEL’s client interface:

 How clients use a TMP-based FSM library.

Goal: demonstrate what can be accomplished.

 The library implementation is in C++ Template Metaprogramming.

 It’s Chapter 11 of an 11-chapter book.
 No time here to cover chapters 1-10 :-)

Only fundamental functionality is shown.

 No state-entry/exit actions, no guards, no state hierarchies, etc.

 Goal is to demonstrate unobvious template functionality, not to
show how to implement FSMs.

© 2014 Scott Meyers, all rights reserved.

Slide 249

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

States are identified by enumerants so that they can be passed as template parameters and
also stored as the value of a data member. A more natural design (IMO) is to model them
as classes, an approach that’s taken in the Boost Statechart library. How that library keeps
track of which state the FSM is in, I don’t know.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSMs and States

An FSM is specified by a class, its states by a nested enum:

class player : public state_machine<player> // player = FSM for
{ // the CD player
private:

enum states { // states in the FSM
Empty, Open, Stopped, Playing, Paused
, initial_state = Empty // initial FSM state

};
…

};

 Base class state_machine provides generic FSM functionality.

 TMP-generated code will go in this class.

 Base class takes the derived class as a template parameter.
 “The Curiously Recurring Template Pattern”

 States are private.

 FSM clients don’t need to access them.
 FSM clients just cause events to be generated.
 The FSM reacts accordingly.

© 2014 Scott Meyers, all rights reserved.

Slide 250

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSM Events

Events are classes. In this example,

 They are defined outside the FSM class.

 If desired, they could be nested inside.

 They are largely empty.

 In a real system, they could be arbitrarily complex.

struct play {};

struct open_close {};

struct pause {};

struct stop {};

class cd_detected {
public:

cd_detected(char const* cdName,
std::vector<std::clock_t> const& trackLengths) { … }

…
};

© 2014 Scott Meyers, all rights reserved.

Slide 251

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSM Transition Actions

Transition actions are FSM member functions:

class player : public state_machine<player>
{
private:

enum states { … };

void start_playback(play const&);
void open_drawer(open_close const&);
void close_drawer(open_close const&);
void store_cd_info(cd_detected const&);
void stop_playback(stop const&);
void pause_playback(pause const&);
void resume_playback(play const&);
void stop_and_open(open_close const&);

…
};

 Like states, transition actions are private.

 FSM clients just generate events.

 The FSM automatically reacts.

© 2014 Scott Meyers, all rights reserved.

Slide 252

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSM Transitions

FSM structure is specified in table form.

 Base class state_machine declares a row template:

template<class Derived>
class state_machine
{
...

protected:
template<

int CurrentState
, class Event
, int NextState
, void (Derived::*action)(Event const&)

>
struct row { … };

…

};

© 2014 Scott Meyers, all rights reserved.

Slide 253

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The name of the transition table must be transition_table, because the base class
state_machine<T> refers to it by that name.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSM Transitions

The FSM creates the table as a collection of rows:

class player : public state_machine<player> {
private:

… // states and transitions

typedef player p; // makes transition table cleaner

struct transition_table : mpl::vector11<

// Start Event Next Action

// +---------+-------------+---------+---------------------+

row < Stopped , play , Playing , &p::start_playback >,

row < Stopped , open_close , Open , &p::open_drawer >,

// +---------+-------------+---------+---------------------+

row < Open , open_close , Empty , &p::close_drawer >,

// +---------+-------------+---------+---------------------+

…
> {};

};

 A fixed-width font makes the table form clearer.

 mpl::vector11 is a vector-like TMP container of 11 types.
 In this case, 11 row instantiations.

© 2014 Scott Meyers, all rights reserved.

Slide 254

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Specifying FSM Transitions

Here’s the complete table:

class player : public state_machine<player> {
…
struct transition_table : mpl::vector11<
// Start Event Next Action
// +---------+-------------+---------+---------------------+
row < Empty , open_close , Open , &p::open_drawer >,
row < Empty , cd_detected , Stopped , &p::store_cd_info >,
// +---------+-------------+---------+---------------------+
row < Stopped , play , Playing , &p::start_playback >,
row < Stopped , open_close , Open , &p::open_drawer >,
// +---------+-------------+---------+---------------------+
row < Open , open_close , Empty , &p::close_drawer >,
// +---------+-------------+---------+---------------------+
row < Paused , play , Playing , &p::resume_playback >,
row < Paused , stop , Stopped , &p::stop_playback >,
row < Paused , open_close , Open , &p::stop_and_open >,
// +---------+-------------+---------+---------------------+
row < Playing , stop , Stopped , &p::stop_playback >,
row < Playing , pause , Paused , &p::pause_playback >,
row < Playing , open_close , Open , &p::stop_and_open >
// +---------+-------------+---------+---------------------+

> {};
};

© 2014 Scott Meyers, all rights reserved.

Slide 255

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

FSM in C++ vs. FSM in a Table

Compare with the original table:

 The table is the source code!

Current State Event Next State Transition Action

Empty Open/Close Open Open drawer

Empty CD-Detected Stopped Store CD info

Stopped Play Playing Start playback

Stopped Open/Close Open Open Drawer

Open Open/Close Empty Close drawer; collect CD info

Paused Play Playing Resume playback

Paused Stop Stopped Stop playback

Paused Open/Close Open Stop playback; open drawer

Playing Stop Stopped Stop playback

Playing Pause Paused Pause playback

Playing Open/Close Open Stop playback; open drawer

© 2014 Scott Meyers, all rights reserved.

Slide 256

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The member function process_event is defined by the state_machine<T> base class.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Using FSMs

Client code just generates events:

 Again, this is taken from C++ Template Metaprogramming.

player p; // An instance of the FSM

p.process_event(open_close()); // user opens CD player
p.process_event(open_close()); // inserts CD and closes
p.process_event(// CD is detected

cd_detected("louie, louie"
, std::vector<std::clock_t>(/* track lengths */))

);

p.process_event(play()); // etc.
p.process_event(pause());
p.process_event(play());
p.process_event(stop());

© 2014 Scott Meyers, all rights reserved.

Slide 257

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Specifying FSMs

 Template metaprogramming makes it possible to create Domain-
Specific Embedded Languages (DSELs).

 DSELs facilitate a declarative programming style.

 Declarative code tends to be easier to create, understand, and enhance.

© 2014 Scott Meyers, all rights reserved.

Slide 258

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Regarding coupling, the interface just shown has all states in a global list (high coupling),
but states have no knowledge of transitions or actions (low coupling). In Boost.Statechart,
it’s the opposite: there is no global list of states, but states know about transitions and
actions.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Other Approaches to FSMs

There are many ways to specify and implement FSMs in C++. They vary in:

 Expressiveness, e.g., support for hierarchical and concurrent states.

UML supports both (think “Statecharts + Petri Nets”)

 Support for both static and dynamic FSM specification.

 Type safety of source code.

 Demands on compiler template support.

 Size and speed of executable code.

 Use of heap memory at runtime.

 Support for multithreading.

 Debuggability.

 Coupling between, e.g., states and transitions.

A plethora of approaches are described in the Further Information.

© 2014 Scott Meyers, all rights reserved.

Slide 259

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: Interesting Template Applications

 Templates are useful for a lot more than just containers

 Templates can generate type-safe wrappers around type-unsafe code.

 Templates can be used to enforce novel kinds of type safety (e.g.,
dimensional units).

 Domain-Specific Embedded Languages (DSELs) can be built on
templates.

© 2014 Scott Meyers, all rights reserved.

Slide 260

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 261

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ in Safety-Critical Systems

Safety-Critical: System failure ⇒ loss of (human) life or serious injury.

Some application areas:

 Transportation: airplanes, cars, trains, ships, spacecraft, etc.

 Medicine: radiation machines, heart-lung machines, drug-delivery
equipment, etc.

 Communication: battlefield radios, emergency response (e.g., 911 in
USA, 112 in Europe), etc.

Current C++ use in such systems?

 Extensive: All application areas above.

© 2014 Scott Meyers, all rights reserved.

Slide 262

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Safety-Critical Software and Risk

Safety-critical software is like “normal” software, except:

 The risk of incorrect behavior must be extraordinarily low.

The key is therefore simple:

 Minimize risk of incorrect behavior.

© 2014 Scott Meyers, all rights reserved.

Slide 263

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Minimizing Risk

General approaches:

 Very detailed specifications.

 Plus rigorous change management.

 Comprehensive testing.

At multiple levels, e.g., unit, module, system.

 Includes performance.
 Adequate performance is a correctness criterion.

 Constrained programmer discretion.

Via coding guidelines.

 Extensive static analysis:

 Ensure coding guidelines are obeyed.

 Look for problems unlikely to be exposed by testing.

Analyses performed by both machines and humans.
 Lint-like tools.
 Formal code inspections.

© 2014 Scott Meyers, all rights reserved.

Slide 264

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Minimizing Risk

 Independent redundant computation:

 Independent teams implement the same functionality.
 Possibly using different programming languages.

At runtime, all implementations execute in parallel.

When implementations produce different results,
 Vote?
 Shut down?
 Revert to known state?

© 2014 Scott Meyers, all rights reserved.

Slide 265

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Minimizing Risk

Recap:

 Detailed specifications.

 Comprehensive testing.

 Constrained programmer discretion.

 Extensive static analysis.

 Independent redundant computation.

Nothing above is specific to C++.

 Development process vastly dominates programming language.

 The only thing C++-specific is the coding guidelines employed.

© 2014 Scott Meyers, all rights reserved.

Slide 266

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

“Hatton” is “Les Hatton,” author of Safer C and a researcher on, among other things,
factors affecting software correctness, especially in safety-critical systems. His comment
on this slide is, I believe, from a personal conversation I had with him. His web site is
http://www.leshatton.org/.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Coding Guidelines

Goals:

 Maximize code clarity and comprehensibility.

 For both humans and static analysis tools.

 Maximize code’s behavioral predictability.

Means:

 Requirements and prohibitions regarding coding practices.

Ideally, guideline violations can be automatically detected.

 Ideal rarely achieved.

E.g., Hatton notes that 5-10% of MISRA-C rules not so enforceable.

 Human static analysis must enforce rules not automatically checkable.

© 2014 Scott Meyers, all rights reserved.

Slide 267

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The Joint Strike Fighter is also known as the F-35. All the avionics code is apparently
written in C++ following the JSF coding standard.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Guideline Levels

Guidelines usually have multiple levels of stringency.

 E.g., Joint Strike Fighter (JSF) rules use three levels:

 Should: advisory.

Will: mandatory, verification not required.

 Shall: mandatory, verification required.

 Other guideline sets distinguish required rules from advisory rules, etc.

Lower stringency levels increase programmer discretion.

 Higher levels are therefore preferable.

 Violating even a JSF “Should” rule requires a manager’s approval.

© 2014 Scott Meyers, all rights reserved.

Slide 268

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

JSF = “Joint Strike Fighter”, AV = “Air Vehicle”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Guideline Types

Lexical guidelines:

 No effect on execution semantics.

 Reduce programmer-to-programmer variation.

 Improves code/system clarity and comprehensibility.

 Examples:

Naming rules:

JSF AV Rule 45: All words in an identifier will be separated by
the ‘_’ character.

 Formatting rules:

High Integrity C++ Rule 3.1.1: Organise ‘class’ definitions by access
level, in the following order: ‘public’, ‘protected’, ‘private’.

MISRA C++ Rule 2-13-4: Literal suffixes shall be upper case.
[E.g., “2.5f” is disallowed, but “2.5F” is okay.]

© 2014 Scott Meyers, all rights reserved.

Slide 269

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Guideline Types

Language use guidelines:

 Specify acceptable language features and constructs.

Remove “unnecessary” and “dangerous” things.
 Identify the acceptable language subset.

 Reduce code’s complexity.

 Increases its behavioral predictability.

 Make it more amenable to static analysis.

For C++, coding guidelines often based on MISRA-C++ or MISRA-C.

© 2014 Scott Meyers, all rights reserved.

Slide 270

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Example Guidelines

 Make no use of “underspecified” behavior.

Many official terms: “undefined”, “unspecified”, etc.

Common in C++.
 From An Investigation of the Unpredicatable Features of the C++[98]

Language:

 Example:

f(calcThis(), calcThat()); // prohibited: eval order undefined

int thisVal = calcThis();
int thatVal = calcThat();
f(thisVal, thatVal); // fine, eval order fully defined

© 2014 Scott Meyers, all rights reserved.

Slide 271

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Example Guidelines

 Avoid “surprising” behavior:

 JSF AV Rule 177: User-defined conversion functions should be
avoided.
 Prevents unexpected implicit conversions.

MISRA C++ Rule 5-0-1: The value of an expression shall be the same
under any order of evaluation that the standard permits.
 Prevents compiler- or optimization-dependent behavior.

High Integrity C++ Rule 3.3.14: Declare the copy assignment operator
protected in an abstract class.
 Prevents partial assignments to derived objects via base class

pointers/references.

© 2014 Scott Meyers, all rights reserved.

Slide 272

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

The motivation for the MISRA rule is as follows: “Over-use of the continue statement can
lead to unnecessary complexity within the code. This complexity may impede effective
testing as extra logic must be tested. The required testing may not be achievable due to
control flow dependencies.”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Example Guidelines

 Avoid overly complex code:

 JSF AV Rule 3: All functions shall have a cyclomatic complexity
number of 20 or less.

High Integrity C++ Rule 4.1: Do not write functions with an excessive
McCabe Cyclomatic Complexity.
 Recommended maximum is 10.

MISRA C++ Rule 6-6-3: The continue statement shall only be used
within a well-formed for loop.

© 2014 Scott Meyers, all rights reserved.

Slide 273

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

std::unique_ptr is in only C++11. std::shared_ptr and std::array are present in both C++11
and TR1. In the latter, they are in namespace std::tr1.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Risk Reduction via Language Choice

C++ can reduce risk compared to C:

 Coding occurs at a higher level of abstraction

Code looks more like the design.

Direct support for multiple paradigms:
 OO: Encapsulation, classes, inheritance, dynamic binding, etc.
 Generic: Templates
 Procedural
 Functional (closures and lambdas supported only in C++11, alas)

 Language features reduce the need for preprocessor usage.

 E.g., C macros often become C++ consts and inlines.

 Templates offer type-safe alternatives to type-unsafe C practices.

 E.g. prevent confusing pointers and arrays:
 std::unique_ptr<T> or std::shared_ptr<T> (or std::auto_ptr<T>) ⇒

single object.
 std::vector<T> or std::array<T, n> ⇒ array of objects.

Riskiness of C++ compared to Java, Ada, C#, etc. hotly debated :-)

© 2014 Scott Meyers, all rights reserved.

Slide 274

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Tool-Related Risks

Compilers, linkers, runtime systems, OSes, etc. are software.

 They also contribute to the reliability of safety-critical systems.

 Reducing risk means addressing the risks they introduce, too.

Approaches:

 Commercial validation suites:

 E.g., for compiler/library conformance to standard C++.

 E.g., against DO-178B.

 Manual analysis of generated code.

 Typically in conjunction with a restricted source code subset.

 Testing, testing, testing.

C++ compilers typically not certified in any standard way.

 Green Hills’ compiler for Embedded C++ has been certified at DO-178B
Level A.

© 2014 Scott Meyers, all rights reserved.

Slide 275

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: C++ in Safety-Critical Systems

 Fundamentally a matter of reducing risk.

 Development process more important than programming language.

 Coding guidelines plus extensive static analysis are key.

 Reliability of ancillary software tools/components also important.

 C++ currently employed in many safety-critical application areas.

© 2014 Scott Meyers, all rights reserved.

Slide 276

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

In TCP/IP communication, TCP guarantees packet delivery, but IP does not. So if the IP
layer misses a deadline and drops a packet, the TCP layer will detect that and make sure
the packet is retransmitted. So ultimately no data is lost, but throughput decreases.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

C++ in Real-Time Systems

Real-Time:

 Hard: Timing deadlines missed ⇒ system failure.

 E.g., engine controllers, pacemakers, elevators, etc.

 Soft: Timing deadlines missed ⇒ reduced behavioral quality.

 E.g., Music and video players, IP network buffer managers, etc.

Key characteristic is not speed, but determinism in timing:

 RT systems fully or largely guarantee their ability to satisfy timing
constraints.

 Fully for hard RT.

 Largely for soft RT.

© 2014 Scott Meyers, all rights reserved.

Slide 277

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

“Language features” includes library functionality, because malloc, free, memcpy, etc., are
library features, not language features.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Approaching RT Development

RT development for C++ is essentially the same as for C:

 Determine timing constraints.

 Avoid language features with indeterminate timing behavior:

C: “Out of the box” malloc/free/memcpy

C++:
 “Out of the box” malloc/free/memcpy/new/delete
 RTTI: dynamic_cast, comparisons of type_info objects
 Exceptions: try/throw/catch

Custom malloc/free/memcpy, etc., may have deterministic timing.

 Perform execution time analysis.

 For functions, tasks, and the entire system.

Hard RT: typically Worst Case Execution Time (WCET) analysis.

 Soft RT: often average case execution time analysis.

© 2014 Scott Meyers, all rights reserved.

Slide 278

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

SSO = “Small String Optimization,” COW = “Copy on Write”

COW is not a valid std::string implementation technique in C++11.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Timing Behavior Variations

Execution time for language features depends on:

 Compiler and linker.

 Including optimization settings

 Call context (for inline functions).

 Hardware features:

 E.g., caching, pipelining, speculative instruction execution, etc.

In addition:

 Library features may be implemented in different ways:

Container/algorithm implementations in the STL.
 E.g., std::string may or may not use SSO or COW.
 E.g., std::sort may use quicksort or introsort.

Different heap management algorithms for malloc/free/new/delete.

© 2014 Scott Meyers, all rights reserved.

Slide 279

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Analyzing Execution Time

Approaches to block/function WCET analysis:

 Static analysis of source code.

 By humans, tools, or both.

 Templates can be handled by explicit instantiation and per-
instantiation analysis.

 Dynamic analysis of code under test.

Observe how long it takes to execute blocks/functions.

 A combination of the above.

Dynamic analysis of basic blocks’ WCETs.

 Static analysis of paths through blocks.
 Testing for 100% path coverage is difficult.

For system WCET, combine:

 Per-task WCET analysis.

 Task schedulability analysis.

© 2014 Scott Meyers, all rights reserved.

Slide 280

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Analyzing Execution Time

Approaches to average-case analysis:

 Same options as for WCET.

 But determine average-case time, not worst-case.

 Multiply C++ statement count by a fudge factor.

A bigger fudge factor than C.
 C++ statements typically do more than C statements.

Useful for ballparking execution time during development.
 Reduces need for fine-tuning later.

© 2014 Scott Meyers, all rights reserved.

Slide 281

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Summary: C++ in Real-Time Systems

 Fundamental approach the same as for C.

 Typically avoid the use of heap operations, RTTI, and exceptions.

© 2014 Scott Meyers, all rights reserved.

Slide 282

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 283

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Using C++ in embedded systems:

 “Abstraction and the C++ Machine Model,” Bjarne Stroustrup, Keynote
address at ICESS04, December 2004, available at http://
www.research.att.com/~bs/abstraction-and-machine.pdf.

An overview of the strengths of C++ for embedded systems.

 “OO Techniques Applied to a Real-time, Embedded, Spaceborne
Application,” Alexander Murray and Mohammad Shababuddin,
Proceedings of OOPSLA 2006.

Describes how OO and C++ are being used in the development of
satellite software.

 “Reducing Run-Time Overhead in C++ Programs,” Embedded Systems
Conference, Dan Saks, 1998 and subsequent years.

How to avoid common C++ performance “gotchas”.

 2002 paper available at http://www.open-
std.org/jtc1/sc22/wg21/docs/ESC_SF_02_405_&_445_paper.pdf

© 2014 Scott Meyers, all rights reserved.

Slide 284

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

More on using C++ in embedded systems:

 “C++ in Embedded Systems: Myth and Reality,” Dominic Herity,
Embedded Systems Programming, February 1998.

Dated, but a good, comprehensive overview of C++ vs. C. Considers
code size, code speed, exceptions, ROMability, etc.

 “Embedded Programming with C++,” Stephen Williams, Third
USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), 1997.

 Summarizes the design, functionality, and performance of a C++
runtime library for embedded systems; the runtime replaces the OS.

 “C++ in der Automotive-Software-Entwicklung,” Matthias Kessler,
Oliver Müller, and Gerd Schäfer, Elektronik automotive, May 2006.

An overview of C++ language features and how they’ve proven
useful in the development of embedded automotive software.
 Article is in German.

© 2014 Scott Meyers, all rights reserved.

Slide 285

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

General information on how C++ is implemented:

 Technical Report on C++ Performance, ISO/IEC TR 18015:2006(E), February
2006, http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf.

 Summarizes likely overhead for various language features.

 Inside the C++ Object Model, Stanley B. Lippman, Addison-Wesley, 1996,
ISBN 0-201-83454-5.

 Information is sometimes outdated, incorrect, or cfront-specific.

 Secure Coding in C and C++, Robert Seacord, Addison-Wesley, 2006, ISBN
0-321-33572-4.

Good treatments of runtime data structures and how undefined
behavior can lead to security vulnerabilities.

 “C++ Exceptions and the Linux Kernel,” Halldór Ísak Glyfason and Gísli
Hjálmtysson, Dr. Dobbs Journal, September 2005.

 Focuses on exceptions, but mentions other language features, too.

© 2014 Scott Meyers, all rights reserved.

Slide 286

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

More general information on how C++ is implemented:

 “Vtbl layout under MI ,” comp.lang.c++.moderated thread, initiated 27
May 2005 by Scott Meyers. Available at http://tinyurl.com/rs3rb.

Note gcc’s “-fdump-class-hierarchy” option.

 “Exception Handling,” Josée Lajoie, C++ Report, March-April 1994 (Part 1)
and June 1994 (Part 2).

Overview of a table-based EH implementation.

 Part 1 was reprinted in C++ Gems, Stanley Lippman (Ed.), SIGS Books &
Multimedia, 1996, ISBN 1-884842-37-2.

 “Itanium C++ ABI,” CodeSourcery web site, available at
http://www.codesourcery.com/cxx-abi/abi.html.

 Includes an ABI specification for table-based EH implementations (for
64 bit applications).

 “Fast Dynamic Casting,” Michael Gibbs and Bjarne Stroustrup, Software
Practice & Experience, December 2005.

Describes a constant-time implementation of dynamic_cast.

© 2014 Scott Meyers, all rights reserved.

Slide 287

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Information on how Microsoft’s C++ is implemented:

 “/d1reportAllClassLayout – Dumping Object Memory Layout,” Ofek
Shilon, Ofek's Visual C++ stuff, 7 November 2010.

 Further information available in “Diagnosing Hidden ODR
Violations in Visual C++ (and fixing LNK2022),” Andy Rich, Visual
C++ Team Blog, 17 May 2007.

 “How a C++ Compiler Implements Exception Handling,” Vishal
Kochhar, The Code Project web site, April 2002, available at
http://www.codeproject.com/cpp/exceptionhandler.asp.

An excruciatingly detailed description of how EH is implemented in
MSVC6-7.

 “The Cost of C++ Exception Handling on Windows,” Kevin Frei,
Presentation to the Northwest C++ Users Group, October 18, 2006.

 “C++ Under the Hood,” Jan Gray, in Black Belt C++: The Masters
Collection, M&T Books, 1994, ISBN 1-55851-334-5

Describes how language features are (were?) implemented in MSVC.

 “Microsoft C++ Name Mangling Scheme,” Kang Seonghoon,
http://mearie.org/documents/mscmangle/.

© 2014 Scott Meyers, all rights reserved.

Slide 288

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Program behavior when pure virtual functions are called:

 “’Pure Virtual Function Called’: An Explanation,” The C++ Source,
February 26, 2007, http://www.artima.com/cppsource/pure_virtual.html.

Cost of error handling without exceptions:

 “Bail, return, jump, or…throw,” Dan Saks, Embedded Systems Design,
March 2007.

Estimates object code size increase of 15-40% for using return values
to report error conditions (vs. no error detection/propagation).

© 2014 Scott Meyers, all rights reserved.

Slide 289

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Controlling the generation and cost of temporary objects:

 More Effective C++: 35 New Ways to Improve Your Programs and Designs,
Scott Meyers, Addison-Wesley, 1996, ISBN 0-201-63371-X.

 Items 19-22 cover the basics of controlling temporary creation.

 Item 29 describes how reference counting can make object creation
inexpensive.

A copy of the book’s table of contents is attached.

 Template metaprogramming (TMP), including expression templates
and TMP-based libraries:

 “Using C++ Template Metaprograms,” Todd Veldhuizen, C++ Report,
May 1995.

C++ Templates, David Vandevoorde and Nicolai Josuttis, Addison-
Wesley, 2003, ISBN 0-201-73484-2, chapters 17-18.

© 2014 Scott Meyers, all rights reserved.

Slide 290

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Code bloat:

 Techniques for Scientific C++, Todd Veldhuizen, Indiana University
Computer Science Technical Report # 542, August 2000. Available at
http://www.osl.iu.edu/~tveldhui/papers/techniques/.

 Section 1.5 is entitled “Managing Code Bloat.”

 “Code Bloat due to Templates,” comp.lang.c++.moderated thread,
initiated 16 May 2002. Available at http://tinyurl.com/xnhn.

 “C++ Templates vs. .NET Generics,” comp.lang.c++.moderated thread,
initiated 4 October 2003. Available at http://tinyurl.com/xnhf.

 The 13 November posting by Mogens Hansen initiates a good
subthread on commonality/variability analysis.

 “Efficient Run-Time Dispatching in Generic Programming with Minimal
Code Bloat,” Lubomir Bourdev and Jaakko Järvi, Library-Centric Software
Design (LCSD ’06), 22 October 2006.

Describes an advanced code hoisting technique.

 “Minimizing Dependencies withing Generic Classes for Faster and
Smaller Programs,” Dan Tsafrir et al., OOPSLA ’09, October 2009.

Discusses performance costs of unnecessarily template class nesting.

© 2014 Scott Meyers, all rights reserved.

Slide 291

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Inlining:

 “Inline Redux,” Herb Sutter, C/C++ Users Journal, November 2003.

 “Inline Functions,” Randy Meyers, C/C++ Users Journal, July 2002.

 Efficient C++, Dov Bulka and David Mayhew, Addison-Wesley, 2000,
ISBN 0-201-37950-3.

 Three chapters on getting the most out of inlining!

 “Link-Time Code Generation,” Matt Pietrek, MSDN Magazine, May 2002.

Describes link-time inlining in Visual C++ .NET, including how the
system determines which functions will be inlined.

© 2014 Scott Meyers, all rights reserved.

Slide 292

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Using link-time polymorphism:

 “Effective Test-Driven Development for Embedded Software,” Michael
Karlesky et al., IEEE 2006 Electro/Information Technology Conference,
May 2006.

Uses link-time polymorphism to achieve TDD for C.

© 2014 Scott Meyers, all rights reserved.

Slide 293

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

ROMing objects:

 “Static vs. Dynamic Initialization,” Dan Saks, Embedded Systems
Programming, December 1998 and “Ensuring Static Initialization in
C++,” Embedded Systems Programming, March 1999.

 Summarizes when compilers are most likely to ROM data.

 Technical Report on C++ Performance, ISO/IEC TR 18015:2006(E).

Discusses what can be ROMed, at least in theory.

© 2014 Scott Meyers, all rights reserved.

Slide 294

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Both Small Memory Software and Real-Time Design Patterns are written as collections of
patterns, but Small Memory Software makes better use of the form, IMO.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Memory management in embedded systems:

 Small Memory Software, James Noble and Charles Weir, Addison-
Wesley, 2001, ISBN 0-201-59607-5, chapter 5.

Also explores other topics related to embedded systems software.

 Real-Time Design Patterns, Bruce Powel Douglass, Addison-Wesley,
2003, ISBN 0-201-69956-7, chapter 6.

 “Improving Performance for Dynamic Memory Allocation,” Marco
Varlese, Embedded Systems Design, May 2009.

Describes implementation of a block allocator.

Guidelines for understanding, using, and writing new and delete:

 Effective C++, Third Edition, Scott Meyers, Addison-Wesley, 2005, ISBN
0-321-33487-6.

 Effective C++, Second Edition, Scott Meyers, Addison-Wesley, 1998, ISBN
0-201-92488-9.

 More Effective C++, Scott Meyers, Addison-Wesley, 1996, ISBN 0-201-
63371-X.

© 2014 Scott Meyers, all rights reserved.

Slide 295

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

General information on new, delete, and memory management:

 “Efficient Memory Allocation,” Sasha Gontmakher and Ilan Horn, Dr.
Dobbs Journal, January 1999, pp. 116ff.

 Modern C++ Design, Andrei Alexandrescu, Addison-Wesley, 2001, ISBN
0-201-70431-5, chapter 4.

 “Memory Management & Embedded Databases,” Andrei Gorine and
Konstantin Knizhnik, Dr. Dobbs Journal, December 2005.

 “Boost Pool Library,” Stephen Cleary,
http://www.boost.org/libs/pool/doc/index.html.

 “A Memory Allocator,” Doug Lea,
http://gee.cs.oswego.edu/dl/html/malloc.html.

 “Scalable Lock-Free Dynamic Memory Allocation,” Maged M. Michael,
Proceedings of the 2004 Conference on Programming Language Design and
Implementation (PLDI), available at
http://www.cs.utah.edu/~wilson/compilers/papers/pldi04-michael.pdf.

© 2014 Scott Meyers, all rights reserved.

Slide 296

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

STL allocators:

 Effective STL, Scott Meyers, Addison-Wesley, 2001, ISBN 0-201-74962-9.

 The C++ Programming Language (Third Edition), Bjarne Stroustrup,
Addison-Wesley, 1997, ISBN 0-201-88954-4, pp. 567-576.

 “Custom STL Allocators,” Pete Isensee,
http://www.tantalon.com/pete/customallocators.ppt.

 PPT materials from a 2003(?) Game Developers Conference Talk.

 “Improving Performance with Custom Pool Allocators for STL,”
Anthony Aue, Dr. Dobbs Journal, September 2005.

© 2014 Scott Meyers, all rights reserved.

Slide 297

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Embedded Systems Programming was renamed Embedded Systems Design in October 2005.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Modeling memory-mapped IO:

 “Register Access in C++,” Pete Goodliffe, C/C++ Users Journal, May 2005.

 Columns by Dan Saks in Embedded Systems Programming, Embedded
Systems Design, or at embedded.com:
 “Mapping Memory,” September 2004.

 “Mapping Memory Efficiently,” November 2004.

 “More Ways to Map Memory,” January 2005.

 “Sizing and Aligning Device Registers,” May 2005.

 “Alternative models for memory-mapped devices,” May 2010.

 “Memory-mapped devices as C++ classes,” June 22, 2010.

 “Accessing memory-mapped classes directly,” September 2010.

 “Bundled vs. unbundled monostate classes,” November 11, 2010.

 “Measuring instead of speculating,” December 2010.

© 2014 Scott Meyers, all rights reserved.

Slide 298

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

More on Modeling memory-mapped IO:

 “Simulate Memory Based Device Control By Using Policy Based
Design,” Andreas Hünnebeck, 25 September 2012.

 “Objects? No, thanks! (Using C++ effectively on small systems),”
Wouter van Ooijen, embedded.com, 15 February 2014.

 “Representing and Manipulating Hardware in Standard C and C++,”
Embedded Systems Conference, Dan Saks, 1999 and subsequent years.

 2002 paper available at http://www.open-
std.org/jtc1/sc22/wg21/docs/ESC_SF_02_465_paper.pdf.

 Technical Report on C++ Performance, ISO/IEC TR 18015:2006(E).

 Includes information on C’s <iohw.h> and C++’s <hardware>.

 “The Embedded C Extension to C,” Marcel Beemster et al., C/C++ Users
Journal, August (Part 1) and September (Part 2), 2005.

Discusses <iohw.h>.
 Purely a C approach – no C++.

© 2014 Scott Meyers, all rights reserved.

Slide 299

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Compilers and volatile:

 “Volatiles are Miscompiled, and What to Do about It,” Eric Eide and
John Regehr, Proc. Eighth ACM and IEEE Intl. Conf. on Embedded Software
(EMSOFT), October 2008.

© 2014 Scott Meyers, all rights reserved.

Slide 300

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Implementing callbacks from C:

 “Interrupts in C++,” Alan Dorfmeyer and Pat Baird, Embedded Systems
Programming, August 2001.

 “Applying Design Patterns to Simplify Signal Handling,” Douglas C.
Schmidt, C++ Report, April 1998.

 “Use Member Functions for C-Style Callbacks and Threads – a General
Solution,” Daniel Lohmann, The Code Project, 8 July 2001,
http://www.codeproject.com/win32/callback_adapter.asp.

 “Generalizing C-Style Callbacks,”
http://www.crystalclearsoftware.com/cgi-
bin/boost_wiki/wiki.pl?Generalizing_C-Style_Callbacks.

 “Serial Port Design Pattern,”
http://www.eventhelix.com/RealtimeMantra/PatternCatalog/serial_port_
design_pattern.htm.

 “Encapsulating ISRs in C++,” Daniel G. Rusch, Embedded Systems
Programming, February 1998.

 “Interoperability & C++ Compilers,” Joe Goodman, C/C++ Users Journal,
March 2004.

© 2014 Scott Meyers, all rights reserved.

Slide 301

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

ISR issues:

 “Reduce RTOS latency in interrupt-intensive apps,” Nick Lethaby,
Embedded Systems Design, June 2009.

 “Minimize Your ISR Overhead,” Nigel Jones, Embedded Systems Design,
January 2007.

 Primarily about avoiding unnecessary register saves/restores during
ISR invocations.

 “Modeling Interrupt Vectors,” Dan Saks, Embedded Systems Design,
September 2006.

 Focuses on getting ISR addresses into interrupt vector tables.

© 2014 Scott Meyers, all rights reserved.

Slide 302

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

TR1 and Boost:

 The C++ Standard Library Extensions, Pete Becker, Addison-Wesley, 2007,
ISBN 0-321-41299-0.
A comprehensive reference for TR1.

 Scott Meyers’ TR1 Information web page, http://www.aristeia.com/
EC3E/TR1_info.html.
Contains links to proposal documents, articles, books, etc.

 Effective C++, Third Edition, Scott Meyers, Addison-Wesley, 2005.
 Item 35 explains and demonstrates use of tr1::function.
 The TOC is attached.

 “Generalized Function Pointers,” Herb Sutter, C/C++ Users Journal
Experts Forum, August 2003.
Describes std::tr1::function.

 Boost web site, http://www.boost.org/

 Beyond the C++ Standard Library: An Introduction to Boost, Björn Karlsson,
Addison-Wesley, 2006, ISBN 0-321-13354-4.
An overview of selected Boost libraries, including bind and function.

© 2014 Scott Meyers, all rights reserved.

Slide 303

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Compile-time dimensional unit analysis:

 Boost.Units, Matthias C. Schabel and Steven Watanabe,
http://www.boost.org/doc/libs/1_46_0/doc/html/boost_units.html.

 “Library for checking dimensional unit correctness?,”
comp.lang.c++.moderated thread, initiated 22 October 2005. Available
at http://tinyurl.com/yrgwt5.
 Includes links (from 2005!) to several libraries.

 “Applied Template Metaprogramming in SIUNITS: the Library of
Unit-Based Computation,” Walter E. Brown, Second Workshop on C++
Template Programming, October 2001. Available at
http://www.oonumerics.org/tmpw01/brown.pdf.

 “Dimension Checking of Physical Quantities,” Michael Kenniston,
C/C++ Users Journal, November 2002.

A description of an implementation for less conformant compilers
(e.g., Visual C++ 6).

© 2014 Scott Meyers, all rights reserved.

Slide 304

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Implementing FSMs:

 C++ Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond, David Abrahams and Aleksey Gurtovoy, Addison-
Wesley, 2005, ISBN 0-321-22725-5, Chapter 11.

Code for FSM example also available at
http://boost.org/libs/mpl/example/fsm/player1.cpp.

 Source code used per the Boost Software License, Version 1.0:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and

accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to

whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction

and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative

works of the Software, unless such copies or derivative works are solely in the form of machine-executable object

code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT

HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER

LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

© 2014 Scott Meyers, all rights reserved.

Slide 305

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

More on implementing FSMs:

 “UML Tutorial: Finite State Machines,” Robert C. Martin, C++ Report,
June 1998.

 “Yet Another Hierarchical State Machine,” Stefan Heinzmann,
Overload, December 2004.

 “Hierarchical State Machine Design in C++,” Dmitry Babitsky, C/C++
Users Journal, December 2005.

 “State Machine Design Pattern,” Anatoly Shalyto et al., Proceedings of
.NET Technologies 2006, May 2006.

 “State Machine Design in C++,” David Lafreniere, C/C++ Users Journal,
May 2000.

 “The Anthology of the Finite State Machine Design Patterns,” Paul
Adamczyk, Proceedings of PLoP 2003, September 2003.

A summary of 24 FSM design patterns!

 “The Boost Statechart Library,” Andreas Huber Dönni, April 2007,
http://www.boost.org/doc/libs/1_36_0/libs/statechart/doc/index.html.

© 2014 Scott Meyers, all rights reserved.

Slide 306

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

The Curiously Recurring Template Pattern (CRTP):

 “Curiously Recurring Template Patterns,” James O. Coplien, C++
Report, February 1995.

 Many template-oriented C++ books include a discussion of CRTP.

Template metaprogramming:

 Modern C++ Design: Generic Programming and Design Patterns Applied,
Andrei Alexandrescu, Addison-Wesley, 2001, ISBN 0-201-70431-5.

 C++ Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond, David Abrahams and Aleksey Gurtovoy, Addison-
Wesley, 2005, ISBN 0-321-22725-5.

© 2014 Scott Meyers, all rights reserved.

Slide 307

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Guidelines for using C++ in safety-critical software:

 Guidelines for the Use of the C++ Language in Critical Systems, MISRA,
June 2008, ISBN 978-906400-03-3 (hardcopy) or 978-906400-04-0 (PDF).

 High-Integrity C++ Coding Standard Manual (Version 2.4), Programming
Research, December 2006.

 “The Power of 10: Rules for Developing Safety-Critical Code,” Gerard
J. Holzmann, IEEE Computer, June 2006.

 Joint Strike Fighter Air Vehicle C++ Coding Standards for the System
Development and Demonstration Program, Lockheed Martin Corporation,
December 2005.

 Cert C++ Coding Standard, CERT, http://tinyurl.com/za3hr.

 Focuses on developing secure code.

 Guidelines for the Use of the C Language in Critical Systems, MISRA,
October 2004, ISBN 0 9524156 2 3 (hardcopy) or 0 9524156 4 X (PDF).

 Superceded for C++ development by the C++ version (above).

© 2014 Scott Meyers, all rights reserved.

Slide 308

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

Aspects of C++ with unpredictable (e.g., undefined) behavior:

 An Investigation of the Unpredicatable Features of the C++ Language, M. G.
Hill and E. V. Whiting, QinetiQ Ltd., May 2004.

Static analysis for safety-critical software:

 “Using Static Analysis to Evaluate Software in Medical Devices,” Raoul
Jetley and Paul Anderson, Embedded Systems Design, April 2008.

© 2014 Scott Meyers, all rights reserved.

Slide 309

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

C++ in real-time systems:

 “Worst Case Execution Time,” Wikipedia,
http://en.wikipedia.org/wiki/Worst_case_execution_time.

 “Use of Modern Processors in Safety-Critical Applications,” Iain Bate et
al., The Computer Journal, June 2001.

 Section 4.4. is devoted to WCET analysis.

 “You Can't Control what you Can't Measure...,” Nat Hillary and Ken
Madsen, Proceedings of the 2nd Intl. Workshop on Worst Case Execution
Time Analysis, June 2002.

Overview of pros/cons of some approaches to analyzing RT software.
 Written by marketing managers – and it shows.

© 2014 Scott Meyers, all rights reserved.

Slide 310

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Further Information

C++11:

 “Embedded Programming with C++11,” Rainer Grimm, Meeting C++,
9 November 2013.

 Presentation materials from a conference talk.

 “C++11,” Wikipedia.

 Effective Modern C++, Scott Meyers, O’Reilly, 2015.

 Subtitle: "42 Specific Ways to Improve your Use of C++11 and C++14.

 The C++ Standard Library, Second Edition, Nicolai M. Josuttis, Addison-
Wesley, 2012.

 Overview of the New C++ (C++11), Scott Meyers,
http://www.artima.com/shop/overview_of_the_new_cpp.

Annotated training materials (analogous to these).

 C++11 - the new ISO C++ standard, Bjarne Stroustrup,
http://www.stroustrup.com/C++11FAQ.html.

 cppreference.com.

Reference source for standard C++ and standard C.

© 2014 Scott Meyers, all rights reserved.

Slide 311

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Licensing Information

Scott Meyers licenses materials for this and other training courses for
commercial or personal use. Details:

 Commercial use: http://aristeia.com/Licensing/licensing.html

 Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

© 2014 Scott Meyers, all rights reserved.

Slide 312

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

About Scott Meyers

Scott is a trainer and consultant on the design and
implementation of C++ software systems. His web site,

http://www.aristeia.com/

provides information on:

 Training and consulting services

 Books, articles, other publications

 Upcoming presentations

 Professional activities blog

© 2014 Scott Meyers, all rights reserved.

Slide 313

Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Licensed for the exclusive use of Reto Bonderer

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Licensed for the exclusive use of Reto Bonderer

