M HSR

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

Embedded Software Engineering 2
Dynamic Memory Management (DMM)

Prof. Reto Bonderer
HSR Hochschule fur Technik Rapperswil

reto.bonderer@hsr.ch

April 2020

Effective C++ in an Embedded Environment

Die meisten der folgenden Informationen stammen aus einem Vortrag von Scott Meyers

© HSR Prof. R. Bonderer

Scott Meyers

Effective C++
1n an
Embedded Environment

Dynamische Speicherverwaltung

Scott Meyers:
= Embedded developers often claim heap management isn’t an issue:
= (Client: “We don’t have a heap.”
= Me: “You’re right. You have five heaps.”
= Dynamic memory management is present in many embedded systems.
= Even if malloc/free/new/delete never called.
= Key indicator:
= Variable-sized objects going in fixed-size pieces of memory.
= E.g., event/error logs, rolling histories, email messages, etc.

© HSR Prof. R. Bonderer

Dynamic Memory Management

Four common worries

Speed
= Are new/delete/malloc/free fast enough?
= How much variance, i.e. how deterministic?

Fragmentation

= Will heap devolve into unusably small chunks?
- This is external fragmentation

Memory leaks
= Will some allocations go undeallocated?

Memory exhaustion
= What if an allocation request can't be satisfied?

Each concern can be addressed.

© HSR Prof. R. Bonderer

© Scott Meyers

Grundsatzliches zu Dynamic Memory Management

Es gibt unterschiedliche Strategien, wie DMM umgesetzt werden kann
= new/delete/malloc/free ist nicht die einzige Variante

= Die "Ubliche" Umsetzung mit new/delete beinhaltet die Gefahr der Fragmentierung und dadurch eines
nicht deterministischen Verhaltens

* Fragmentierung entsteht jedoch nur durch fortlaufendes new/delete

= Wenn new nur beim Aufstarten (welches meist nicht zeitkritisch ist) durchgefihrt wird, delete erst beim
Herunterfahren, dann besteht kein Fragmentierungsproblem

= Unterschiedliche Konfigurationen kénnen damit sehr elegant gelost werden

© HSR Prof. R. Bonderer

A Survey of Allocation Strategies

Each less general than malloc/free/new/delete.
= Typically more suited to embedded use.

We’ll examine:

= Fully static allocation
= LIFO allocation

= Pool allocation

= Block allocation

= Region allocation

= An optimization that may be combined with other strategies.

© HSR Prof. R. Bonderer

Fully Static Allocation

No heap. Objects are either:
= On the stack: Local to a function.
= Of static storage duration:
= At global scope.
= At namespace scope.
= static at file, function, or class scope.

Useful when:
= Exact or maximum number of objects in system statically determinable.

© HSR Prof. R. Bonderer

Fully Static Allocation (cont'd)

“Allocation” occurs at build time. Hence:

= Speed: essentially infinite; deterministic.
= External Fragmentation: impossible.

= Memory leaks: impossible.

= Memory exhaustion: impossible.

But:

= |nitialization order of static objects in different translation units (TUs) indeterminate.

© HSR Prof. R. Bonderer

“Heap Allocation”

Two common meanings:
= Dynamic allocation outside the runtime stack.

* Jrregular dynamic allocation outside the runtime stack.
= Unpredictable numbers of objects.
= Unpredictable object sizes.
= Unpredictable object lifetimes.

We'll use the first meaning.
* The second one is just the most general (i.e., hardest) case of the first.

User-controlled non-heap memory for multiple variable-sized objects entails heap management:

uint8_t buffer[someSize]; // this is basically a heap; create/destroy multiple
coe // different-sized objects in buffer

© HSR Prof. R. Bonderer

The C++ Memory Management Framework

User-defined memory management typically built upon:
= User-defined versions of malloc/free

= User-defined versions of operator new/new[], operator delete/delete(]
= new handlers:

= Functions called when operator new/new[] can’t satisfy a request.

Here we focus on allocation strategies suitable for embedded systems.

© HSR Prof. R. Bonderer

Example: LIFO Heap Allocation
Dynamic allocation is strictly LIFO (like a stack).

—— Heap Base Heap Top — Heap End—

Easy way to implement a “union” for multiple-mode operations:

" E.g., a system in “normal” or “diagnostic” mode.
» Static allocation requires the sum of the two modes’ memory needs.

Normal Mode Diagnostic Mode

» LIFO allocation only the maxinum of the modes’ needs.

|
i Mormal or Diagnostic Mode

© Scott Meyers

© HSR Prof. R. Bonderer

LIFO Heap Allocation, First Cut

class LIFOAllocator { // provides behavior of new/delete via allocate/deallocate
public:
LIFOAllocator(uint8_t* heapAddr, std::size t heapSize)
: heapBase(heapAddr), heapEnd(heapAddr+heapSize), heapTop(heapAddr)
{}
void* allocate(std::size_t sz) throw (std::bad_alloc); // not shown
void deallocate(void* ptr, std::size t sz) throw (); // ditto
private:
uint8_t* const heapBase;
uint8_t* const heapEnd;
uint8_t* heapTop;
}s
= allocate/deallocate behave like class-specific new/delete.
= Pointer data member = copying functions should be declared.

= |f LIFOAllocator templatized, ctor params could be template params.
= The MMIO section has an example.

© HSR Prof. R. Bonderer

LIFO Heap Allocation, First Cut (cont'd)

Classes can easily build custom new/delete using LIFOAllocator:
uint8_t heapSpace[heapSpaceSize]; // memory for heap

LIFOAllocator customAllocator(heapSpace, // typically at global scope
heapSpaceSize);

void* Widget: :operator new(std::size t bytes) throw (std::bad_alloc)
{

return customAllocator.allocate(bytes);

}

void Widget: :operator delete(void* ptr, std::size_t size) throw ()

{

customAllocator.deallocate(ptr, size);

}

© HSR Prof. R. Bonderer

LIFO Heap Allocation

Speed: extremely fast; deterministic.
= Assuming you don't run out of memory

External Fragmentation: possible, but easy to detect.

Memory leaks: possible, easy to detect.
= Memory exhaustion: possible.

© HSR Prof. R. Bonderer

Pool Allocation

Heap allocations are all the same size.

= Typically because all heap objects are one size.
= Well-suited for class-specific allocators.

= (Can also work when all heap objects are nearly the same size.
= Then all allocations are the size of the largest objects.

Basic approach:
= Treat heap memory as an array.
= Each element is the size of an allocation unit, therefore no need to store the size of each allocation.
= Unallocated elements are kept on a free list.
= Allocation/deallocation is a simple list operation:
= Removing/adding to the front of the free list.

© HSR Prof. R. Bonderer

Pool Allocation (cont'd)

template<std::size_t elementSize>
class PoolAllocator {

public:
PoolAllocator(uint8_ t* heapAddr, std::size_t heapSize); // on next page
void* allocate(std::size_t sz) throw (std::bad_alloc); // coming soon
void deallocate(void* ptr, std::size_t sz) throw (); // ditto
private:
union Node { // pool element
uint8 t data[elementSize]; // when in use
Node* next; // on free list
}s
Node* freelList;
}s

= Pointer data member = copying functions should be declared.
= |f PoolAllocator untemplatized, template param could be ctor param.
= |deally, we’d ensure that elementSize > 0, better: >= sizeof(Node*).

© HSR Prof. R. Bonderer

PoolAllocator Constructor

template<std::size_t elementSize>
PoolAllocator<elementSize>: :PoolAllocator(uint8_t* heapAddr,
std::size_t heapSize)
: freeList(reinterpret_cast<Node*>(heapAddr))
{
const std::size t nElems = heapSize / sizeof(Node);
for (std::size t i = @; i < nElems-1; ++i) // link array elements
freeList[i].next = &freeList[i+1];
freeList[nElems-1].next = nullptr; // nullptr from and after C++11

}

\\}

heapAddr /NSNS NN /NSNS /N

freelist — |

© HSR Prof. R. Bonderer

PoolAllocator::allocate()

template<std::size_t elementSize>
void* PoolAllocator<elementSize>::allocate(std::size t bytes) throw (std::bad _alloc)

{

if (bytes != elementSize)
return ::operator new(bytes);

if (freeList != nullptr)

{
void* pMem = freeList; // alignment?
freeList = freelList->next;
return pMem;

}

else
throw std::bad_alloc();

heapAddr __ /NSNN /N /S NSNSNN

freeList — |

© HSR Prof. R. Bonderer

PoolAllocator::deallocate()

template<std::size_t elementSize>

void PoolAllocator<elementSize>::deallocate(void* ptr,

{

if (ptr == nullptr)
return;

if (size != elementSize)

{
::operator delete(ptr);
return;

}

Node* p = static_cast<Node*>(ptr);
p->next = freelList;
freeList = p;

heapAddr

/NN LN SN

std::size_t size) throw ()

NSNS N

\
freeList — |

© HSR Prof. R. Bonderer

PoolAllocator::allocate()

Variation: allow bytes <= elementSize, i.e., that the request fits.

= More flexible, but can lead to internal fragmentation.

© HSR Prof. R. Bonderer

Used

Free

Internal
Fragmentation

Pool Allocation

Speed: extremely fast; deterministic.

= Assuming
- No wrong-sized requests
- You don't run out of memory

External Fragmentation: impossible

Memory leaks: possible

Memory exhaustion: possible.

© HSR Prof. R. Bonderer

Block Allocation

Essentially a set of pools with different element (block) sizes:

n-byte requests handled by first pool with size > n and non-null free list.

Useful when:

Pool for
allocations
of size s,

Pool for
allocations
of size s,

Pool for
allocations
of size s,

Pool for
allocations
of size s,

Pool for
allocations
of size s,

= Allocations needed for a relatively small number of object sizes.

= QOtherwise internal fragmentation = wasted memory.

Many RTOSes offer native support for block allocation.

© HSR Prof. R. Bonderer

Block Allocation

Speed: fast; nearly deterministic (and boundable).
= Assuming
- No requests larger than handled by the largest-chunk pool.
- You don't run out of memory

= Speed isn’t totally deterministic, because you may need to examine multiple pools to find one with
sufficient free memory.

External Fragmentation: impossible

Memory leaks: possible
= Memory exhaustion: possible.

© HSR Prof. R. Bonderer

General Variable-Sized Allocation

What new/delete/malloc/free already do.
= Desirable only if vendor-supplied routines unacceptable.
Possible motivations:
= Detect overruns/underruns.
= Gather heap usage data.
= Size and lifetime distributions, temporal usage patterns, etc.
= Support data structure clustering.
= Avoid thread-safety penalty.
= ST applications.

® Thread-local allocators in MT applications.

© HSR Prof. R. Bonderer

Region Allocation

An optimization for when memory for all of a heap’s objects can be released at once.
= (Clients call a region member function at the appropriate time.
= Faster than deallocating each object’s memory individually.
= Common with LIFO allocators, but compatible with pools, blocks, etc.
= operator delete for individual objects a no-op, hence very fast.

= (Can still use delete operator to invoke destructors:
delete p; // invoke *p’s dtor, then operator delete on p;
// if *p in a region, operator delete is a no-op

© HSR Prof. R. Bonderer

Summary: Dynamic Memory Management

= Many embedded systems include dynamic memory management.

= Key issues are speed, fragmentation, leaks, and memory exhaustion.
= LIFO is fast and w/o fragmentation, but object lifetimes must be LIFO.
= Pools are fast and w/o fragmentation, but object sizes are limited.

= Block allocation is essentially multiple pool allocators.

= Regions excel when all heap objects can be released simultaneously.

© HSR Prof. R. Bonderer

