M HSR

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

Embedded Software Engineering 2
Interface-Based Programming

Prof. Reto Bonderer
HSR Hochschule fur Technik Rapperswil

reto.bonderer@hsr.ch

April 2020

Effective C++ in an Embedded Environment

Die meisten der folgenden Informationen stammen aus einem Vortrag von Scott Meyers

© HSR Prof. R. Bonderer

Scott Meyers

Effective C++
1n an
Embedded Environment

Interface-Based Programming

Interface-based programming:

= Coding against an interface that allows multiple implementations.
= Function interface.
= (Class interface.

= Client code unaware which implementation it uses.
= |t depends only on the interface.

© HSR Prof. R. Bonderer

Polymorphism

The use of multiple implementations through a single interface.

Key question: when is it known which implementation should be used?
= Runtime: each call may use a different implementation.
= Use inheritance + virtual functions.
= Link-time: each link may yield a different set of implementations.
= Use separately compiled function bodies.
= Applies to both static and dynamic linking.
= pImplidiom
= Compile-time: each compilation may yield a different set of implementations.
= Use computed typedefs.

© HSR Prof. R. Bonderer

Runtime Polymorphism

®= The “normal” meaning of interface-based programming.
® |n much OO literature, the only meaning.
= Unnecessarily restrictive for C++.

» The most flexible.

= (Can take advantage of information known only at runtime.

=" The most expensive.
= Based on vptrs, vtbls, non-inline function calls.

© HSR Prof. R. Bonderer

Runtime Polymorphism Example

class Packet { // base class (“interface”)
public:
virtual bool isWellFormed() const = 0;
virtual std::string payload() const = 0;
}s5
class TCPPacket: public Packet { // derived class (“implementation”)

bool isWellFormed() const overrride; // override is C++14
std::string payload() const override;

}s
class CANPacket: public Packet { // derived class (“implementation”)

bool isWellFormed() const override;
std::string payload() const override;

};m

© HSR Prof. R. Bonderer

Runtime Polymorphism Example (cont'd)

std::unique_ptr<Packet> nextPacket(/* params */); // factory function; returns next packet
std: :unique_ptr<Packet> p;

while (p = nextPacket(/* params */), p.get() != nullptr) // side effect, comma operator
{

if (p->isWellFormed()) // use Packet interface
{
}

}

Runtime polymorphism is reasonable here:
= Types of packets vary at runtime.

© HSR Prof. R. Bonderer

Link-Time Polymorphism

= Useful when information already known during linking, but not yet during compilation.
= No need for virtual functions.
= Typically disallows inlining.

= Most inlining is done during compilation.

© HSR Prof. R. Bonderer

Link-Time Polymorphism Example

Software can be deployed on two kinds of boxes:
= Expensive, high-performance box.

= Uses expensive, fast components.
= Cheaper, lower-performance box.

= Uses cheaper, lower-performance components.
= Essentially the same software runs on both boxes.
= Component driver implementations differ.

= A common interface can be defined.
Approach:
= One class definition for both drivers.
= Different component-dependent implementations.
= |Implementations selected during linking.

= This is “C” polymorphism.

© HSR Prof. R. Bonderer

Link-Time Polymorphism Example

device.h:

namespace Drivers
{
class Impl; // forward declaration
class DeviceDriver // all nonvirtual non-inline functions
{
public:

DeviceDriver();

~DeviceDriver();

void reset();

private:
Impl* pImpl; // ptr to data for driver
}s
}

All client code #includes this header and codes against this class.
= Note lack of virtual functions.

© HSR Prof. R. Bonderer

Link-Time Polymorphism Example (cont'd)

EFDevice.cpp (generates EFDevice.o, EFDevice.ob1j, or EFDevice.dl], etc.):

= EFDevice = “Expensive Fast Device”
namespace Drivers

{
struct Impl { ... }; // data needed by EFDevice driver

DeviceDriver: :DeviceDriver() // ctor code for EFDevice
{ ...}
DeviceDriver: :~DeviceDriver() // dtor code for EFDevice
{ ...}
void DeviceDriver::reset() // reset code for EFDevice

{ ...}

All functions in this file have access to the Imp1l struct defined here.

© HSR Prof. R. Bonderer

Link-Time Polymorphism Example (cont'd)

CSDevice.cpp (generates CSDevice.o, CSDevice.obij, or CSDevice.dll, etc.):

CSDevice = “Cheap Slow Device”
namespace Drivers

{
struct Impl { ... }; // data needed by CSDevice driver

DeviceDriver: :DeviceDriver() // ctor code for CSDevice
{ ...}
DeviceDriver: :~DeviceDriver() // dtor code for CSDevice
{ ...}
void DeviceDriver::reset() // reset code for CSDevice

{ ...}

All functions in this file have access to the Imp1l struct defined here.
= TImplin this file typically different from that in EFDevice. cpp.
= Function bodies in this file also typically different.

© HSR Prof. R. Bonderer

Link-Time Polymorphism Example (cont'd)

Link with:

= EFDevice.o if building for expensive, high-performance box.
® Or link dynamically with e.g. EFDevice.dll.

= CSDevice.o if building for cheaper, lower-performance box.
= Or link dynamically with e.g. CSDevice.dll.

Link-time polymorphism is reasonable here:
= Deployment platform unknown at compilation, known during linking.

= No need for flexibility or expense of runtime polymorphism.
- No vtbls.
- Noindirection through vtbls.
- Noinheritance needed.

© HSR Prof. R. Bonderer

Compile-Time Polymorphism

Useful when
= |mplementation determinable during compilation.
= Want to write mostly implementation-independent code.

No need for virtual functions.

Allows inlining.

Based on implicit interfaces
= QOther forms of polymorphism based on explicit interfaces.

© HSR Prof. R. Bonderer

Device Example Reconsidered

Goal:

= Device class to use determined by platform’s #bits/pointer, e.g. 16 vs. 32 bits.
= This is known during compilation.

Approach:
= Create 2 or more classes with “compatible” interfaces.
= j.e., support the same implicit interface.
= e.g.,, must offer a reset function callable with 0 arguments.
= Use compile-time information to determine which class to use.
= Define a typedef for this class.
= Program in terms of the typedef.

© HSR Prof. R. Bonderer

Compile-Time Polymorphism Example

Revised device.h:

#include "NASDevice.h" //
//
#tinclude "BASDevice.h" //
//
#tinclude "SASDevice.h" //
//

//

NAS = “Normal Address Space” (32 bits);
defines class NASDevice

BAS = “Big Address Space” (>32 bits);
defines class BASDevice

SAS = “Small Address Space” (<32 bits);
defines class SASDevice

remainder of device.h (coming soon)

By design, each class has a compatible interface.

= Members with identical names, compatible types, etc.

© HSR Prof. R. Bonderer

Compile-Time Polymorphism Example (cont'd)

Driver classes may use any language features:
= Especially inlining.

class NASDevice {
public:

void reset() { ... } // inline function

}s
class BASDevice {
public:

void reset() { ... } // inline function

}s

class SASDevice {

void reset(); // non-inline function

}s

© HSR Prof. R. Bonderer

Compile-Time Polymorphism Example (cont'd)

Clients refer to the correct driver type this way:

Device: :type d; // d’s type is either NASDevice, BASDevice, or SASDevice,
d.reset(); // depending on # of bits/pointer

= Device “computes” the proper class for type to refer to.
= |mplementation on next page.

Compile-time polymorphism is reasonable here:

= Device type can be determined during compilation.
*= No need for flexibility or expense of runtime polymorphism.
= No need to configure linker behavior or give up inlining.

© HSR Prof. R. Bonderer

Compile-Time Polymorphism Example (cont'd)

Revised device.h (cont'd):

template<int ptrBitsVs32> struct DeviceChoice;

template<> struct DeviceChoice<-1> { // When bits/ptr < 32
typedef SASDevice type;

}s

template<> struct DeviceChoice<0> { // When bits/ptr
typedef NASDevice type;

}s

template<> struct DeviceChoice<1> { // When bits/ptr

typedef BASDevice type;
}s

struct Device {

enum { bitsPerVoidPtr = CHAR_BIT * sizeof(void*) };

enum { ptrBitsVs32 = bitsPerVoidPtr > 32 ? 1 :
bitsPerVoidPtr == 32 ? 0 :

-1
typedef DeviceChoice<ptrBitsVs32>::type type;
}s

© HSR Prof. R. Bonderer

}s

> 32

Summary: Interface-Based Programming

= One interface, multiple implementations.

= Polymorphism used to select the implementation.
= Runtime polymorphism uses virtual functions.
= Link-time polymorphism uses linker configuration.
= Compile-time polymorphism uses computed typedefs

© HSR Prof. R. Bonderer

