
Science of Computer Programming 8 (1987) 231-274

North-Holland

231

STATECHARTS: A VISUAL FORMALISM FOR
COMPLEX SYSTEMS*

David HAREL

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Communicated by A. Pnueli

Received December 1984

Revised July 1986

Abstract. We present a broad extension of the conventional formalism of state machines and

state diagrams, that is relevant to the specification and design of complex discrete-event systems,

such as multi-computer real-time systems, communication protocols and digital control units. Our

diagrams, which we call statecharts, extend conventional state-transition diagrams with essentially

three elements, dealing, respectively, with the notions of hierarchy, concurrency and communica-

tion. These transform the language of state diagrams into a highly structured and economical

description language. Statecharts are thus compact and expressiv-small diagrams can express

complex behavior-as well as compositional and modular. When coupled with the capabilities

of computerized graphics, statecharts enable viewing the description at different levels of detail,

and make even very large specifications manageable and comprehensible. In fact, we intend to

demonstrate here that statecharts counter many of the objections raised against conventional state

diagrams, and thus appear to render specification by diagrams an attractive and plausible approach.

Statecharts can be used either as a stand-alone behavioral description or as part of a more general

design methodology that deals also with the system’s other aspects, such as functional decomposi-

tion and data-flow specification. We also discuss some practical experience that was gained over

the last three years in applying the statechart formalism to the specification of a particularly

complex system.

1. Introduction

The literature on software and systems engineering is almost unanimous in

recognizing the existence of a major problem in the specification and design of large

and complex reactive systems. A reactive system (see [14]), in contrast with a

transfohnational system, is characterized by being, to a large extent, event-driven,

continuously having to react to external and internal stimuli. Examples include

telephones, automobiles, communication networks, computer operating systems,

missile and avionics systems, and the man-machine interface of many kinds of

ordinary software. The problem is rooted in the difficulty of describing reactive

behavior in ways that are clear and realistic, and at the same time formal and

* The initial part of this research was carried out while the author was consulting for the Research
and Development Division of the Israel Aircraft Industries (IAI), Lod, Israel. Later stages were supported

in part by grants from IA1 and AD CAD, Ltd.

0167-6423/87/%3.50 @ 1987, Elsevier Science Publishers B.V. (North-Holland)

232 D. Hare1

rigorous, sufficiently so to be amenable to detailed computerized simulation. The
behavior of a reactive system is really the set of allowed sequences of input and
output events, conditions, and actions, perhaps with some additional information
such as timing constraints. What makes the problem especially acute is the fact that
a set of sequences (usually a very large and complex one) does not seem to lend
itself naturally to ‘friendly’ gradual, level-by-level descriptions, that would fit nicely
into a human being’s frame of mind.

For transformational systems (e.g., many kinds of data-processing systems) one
really has to specify a transformation, or function, so that an input/output relation
is usually sufficient. While transformational systems can also be highly complex,
there are several excellent methods that allow one to decompose the system’s
transformational behavior into ever-smaller parts in ways that are both coherent
and rigorous. Many of these approaches are supported by languages and imple-
mented tools that perform very well in practice, We are of the opinion that for
reactive systems, which present the more difficult cases, this problem has not yet
been satisfactorily solved. Several important and promising approaches have been
proposed, and Section 8 of this paper discusses a number of them. However, the
general feeling is that many more improvements and developments are necessary.
This paper represents a certain attempt to progress along these lines.

Much of the literature also seems to be in agreement that states and events are
u piori a rather natural medium for describing the dynamic behavior of a complex
system. See, for example, [7-9,19,23]. A basic fragment of such a description is a
stute transition, which takes the general form “when event (Y occurs in state A, if
condition C is true at the time, the system transfers to state B”. Indeed, many of
the informal exchanges concerning the dynamics of systems are of this nature; e.g.,
“when the plane is in cruise mode and switch x is thrown it enters navigate mode”,
or “when displaying the time, if button y is pressed the watch starts displaying the
date”. Finite state machines and their corresponding state-transition diagrams (or
state diagrams for short) are the formal mechanism for collecting such fragments
into a whole. State diagrams are simply directed graphs, with nodes denoting states,
and arrows (labelled with the triggering events and guarding conditions) denoting
transitions. Figure 1 shows a simple self-explanatory state diagram.

However, it is also generally agreed that a complex system cannot be beneficially

described in this naive fashion, because of the unmanageable, exponentially growing
multitude of states, all of which have to be arranged in a ‘flat’ unstratified fashion,

Fig. 1.

Statecharts: A visual formalism for complex systems 233

resulting in an unstructured, unrealistic, and chaotic state diagram. See, for example,

[7, p. 57; 23, p. 3801. To be useful, a state/event approach must be modular,

hierarchical and well-structured. It must also solve the exponential blow-up problem

by somehow relaxing the requirement that all combinations of states have to be

represented explicitly. A good state/event approach should also cater naturally for

more general and flexible statements, such as

(1) “in all airborne states, when yellow handle is pulled seat will be ejected”,

(2) “gearbox change of state is independent of braking system”,

(3) “when selection button is pressed enter selected mode”,

(4) “display-mode consists of time-display, date-display and stopwatch-display”.

Clause (1) calls for the ability to cluster states into a superstate, (2) introduces

independence, or orthogonality, (3) hints at the need for more general transitions than

the single event-labelled arrow, and (4) captures the rejnement of states.

Conforming to the “one picture is worth a thousand words” aphorism, one would

like to find a way to change or extend the good old state/event formalism in ways

that will satisfy these needs, while retaining, or even enhancing, the visual appeal

of state diagrams. In fact, [lo], when surveying flowchart techniques, all but chal-

lenges the computer science research community to come up with a good visual

medium for describing concurrency; since orthogonality, as described later, rep-

resents concurrency, this paper can be viewed as a response to that challenge.

Some of the previous attempts at extending flat state diagrams, such as com-

municating state-machines and augmented transition-diagrams will be discussed in

Section 8.

In Sections 2-5, the main sections of the paper, we introduce statecharts’ as a

possible attempt at confronting these problems. Statecharts constitute a visual
formalism for describing states and transitions in a modular fashion, enabling

clustering, orthogonality (i.e., concurrency) and refinement, and encouraging ‘zoom’

capabilities for moving easily back and forth between levels of abstraction.

Technically speaking, the kernel of the approach is the extension of conventional

state diagrams by AND/OR decomposition of states together with inter-level transi-

tions, and a broadcast mechanism for communication between concurrent com-

ponents. The two essential ideas enabling this extension are the provision for ‘deep’

descriptions and the notion of orthogonality. Since we strongly believe in the virtues

of visual descriptions, the approach is described solely in its diagrammatic terms,

although the reader should be able to provide a textual, language-theoretic or

algebraic equivalent if so desired. In a nutshell, one can say:

statecharts = state-diagrams + depth

+ orthogonality + broadcast-communication.

’ This rather mundane name was chosen, for lack of a better one, simply as the one unused combination
of ‘flow’ or ‘state’ with ‘diagram’ or ‘chart’. In the earlier versions of this paper [12], we used the word
statifcation, meant as a combination of specification and stratification using states, for the act of preparing
statecharts.

234 D. Hare1

The running example used throughout these sections concerns the author’s Citizen
Quartz Multi-Alarm III wristwatch*, the example being sufficiently simple to be
contained here (almost) in its entirety, but sufficiently complex to serve as an
illustration of the method.

Section 6 discusses a number of advanced features that are under investigation
as possible additions to the basic formalism, including the integration of statecharts
with temporal logic and the introduction of probabilism. Section 7 contains a brief
account of the formal semantics of statecharts; a more complete treatment, however,
is deferred to a separate paper. Section 8, as mentioned, discusses related work and
compares the statechart formalism with some alternative notations suggested for
the specification of reactive systems. Section 9 reports briefly on the experience
accumulated with the language and on an implementation that is in the workings.

2. State-levels: Clustering and refinement

In deciding upon a graphical representation for capturing depth and hierarchy,
there is a real disadvantage in drawing trees or other line-graphs. These media make
no use whatsoever of the area of the diagram: lines and points are of no width,
and no advantage is taken of location. We shall use rounded rectangles (boxes in
the sequel) to denote states at any level, using encapsulation to express the hierarchy
relation. Arrows will be allowed to originate and terminate at any level. The graphics
is actually based on a more general concept, the higraph, which combines notions
from Euler circles, Venn diagrams and hypergraphs, and which seems to have a
wide variety of applications. See [13].

An arrow will be labelled with an euent (or an abbreviation of one) and optionally
also with a parenthesized condition. (In Section 5 it will be allowed to be labelled
also with Mealy-like outputs, or actions.) Thus, in Fig. 1 there are three states A,
B, and C and, for example, event y occurring in state A transfers the system to
state C, but only if condition P holds at the instant of occurrence.

Now, since event /3 takes the system to B from either A or C we can cluster the
latter into a new super-state D and replace the two /3 arrows by one, as in Fig. 2.

0

A a

P 0 LB+ y(P)

C 6

Fig. 2.

’ This is a product of the Citizen Watch Company of America, Inc.

Statecharts: A visual formalism for complex systems 235

The semantics of D is then the exclusive-or (XOR) of A and C; i.e., to be in state

D one must be either in A or in C, and not in both. Thus, D is really an abstraction

of A and C. The state D and its outgoing /I arrows thus-capture a common property

of A and C, namely, that p leads from them to B. The decision to let transitions

that leave a super-state, such as the p in Fig. 2, stand for transitions leaving all

substates turns out to be highly important, and is the main way statecharts economize

in the number of arrows. Figure 2 might also be approached from a different angle:

first we might have decided upon the simple situation of Fig. 3, and then state D

could have been reJined to consist of A and C, yielding Fig. 4. Having made this

refinement, however, the incoming cy and /I arrows become underspecified, as they

do not say which of A or C is to be entered. Extending them to point directly to

A and C, respectively, does the job, and if the y transition within D is added, one

indeed obtains Fig. 2. Thus, clustering, or abstraction, is a bottom-up concept and

refinement is a top-down one; both give rise to the or-relationship between a state’s

substates.

Fig. 3.

D

A 0
C 0

cc

37 p 8

6

Fig. 4. Fig. 5.

Both zooming-in and zooming-out can be illustrated using this simple example.

The first is achieved by looking ‘inside’ D (disregarding external interface for the

time being) and finding simply Fig. 5, and the latter is done by eliminating the

inside of D and abstracting Fig. 2 to Fig. 3. These notions will acquire more

significance later on.

Suppose now that as far as the ‘outside’ world is concerned A is the default state

among A, B and C, in the sense that if asked to enter the A, B, C group of states

the system is to enter A unless otherwise specified. In the description given by Fig.

1 this can be captured by a small arrow as in Fig. 6(i). For Fig. 2 one can use the

direct notation of Fig. 6(ii), or alternatively, the two-step one of Fig. 6(iii), which

(i 1 (ii) (iii)

Fig. 6.

236 D. Hare1

says that D is default among D and B, and A is the default among A and C. Of
course, for zooming in and out the latter has obvious advantages. Default arrows
are thus analogous to the start states of finite-state automata.

Let us now introduce our running example. The Citizen Quartz Multi-Alarm III
watch has a main display area and four smaller ones, a two-tone beeper, and four
control buttons denoted here a, b, c and d. See Fig. 7. It can display the time (with

ymf :
Fig. 7.

am/pm or 24 hour time modes) or the date (day of month, month, day of week),
it has a chime (beeps on the hour if enabled), two independent alarms, a stopwatch
(with lap and regular display modes, and a l/100 s display), a light for illumination,
a weak battery blinking indication, and a beeper test. We shall assume throughout
that the main functions of these are known, and will use liberal terminology, such
as ‘power weakens’ to denote certain events of obvious meaning, though, of course,
to make things complete one would have to tie these events up with actual happenings
in the physical parts of the system, or to specify them as output events produced
in other, separately specified, components.

The main external events will be the depressing and releasing of buttons (e.g.,
event “a” denotes button a being depressed, and “6” denotes it being released),
and there will be certain internal ones too. The distinction is sharpened in Section
5. We remark here that while the description of the watch presented herein is
intended to be as faithful to its actual workings as possible, there are some very
minor differences that are not worth dwelling upon here, and that most likely will
not be detected in normal use of the watch. The point is, however, that the statechart
of the watch (cf. Fig. 3 1) was obtained by the author using the obviously inappropri-
ate method of observation from the final product; had it been the basis for the
initial specification and design of that final product, in the spirit of the gradual
development presented below, the undescribed anomalies might have been avoided.

Figure 8 shows the transitions between the normal dispZays mode and the various
beeping states. Here Tl and T2 stand for the respective internal time settings of
the alarms, and T for the current time. Also, Pl abbreviates “alarm1 enabled A
(alarm2 disabled v Tl # T2)“, and similarly for P2, while P abbreviates “alarm1

Statecharts: A visual formalism for complex systems 231

30 SeC in alarms-beep
4

J hits T2 (p2),

alarms- beep

Fig. 8.

enabled A alarm2 enabled A Tl = T2”. These conditions will take on a more

precise form when more of the description of the watch is available. Notice the

clustering, which replaces six arrows by two. Actually, the displays do not change

while the alarm is beeping, but this information should be specified under the topic

of activities discussed in Section 5.

A refinement of the displays state yields Fig. 9 in which it has been decided that

there will be a cycle of displays linked by repeated depressings of a; that the time

and date displays are linked by d’s but that the time display will resume after -2

minutes in date. Also, the time display is the default, meaning, among other things,

that the entrances from alarms-beep in Fig. 8 will actually be entrances to time. This

will later be changed, but for the time being it is good enough.

displays
4

Fig. 9.

238 D. Hare1

One of the most interesting and frequent ways of entering a group of states is by

the system’s history in that group. The simplest kind of this ‘enter-by-history’ is

entering the state most recently visited. In our watch example, we can refine each

of the three states alarml, alarm2 and chime of Fig. 9 with ofl and on substates,

intended to model the display of the disabled or enabled status of the corresponding

feature. The new’alurml state with its a-entrance can be described as in Fig. 10(a),

meaning “enter the most recently visited of the two, and enter 08 if you are here

for the first time”. Equivalently, one can use the continuation-arrow notation of

Fig. 10(b). In either case, d is used to switch between the two substates.

It should be noted that an H generally means that history is applied only on the

level in which it appears, so that in Fig. 11 (a) history chooses only between G and

F; that is, the system enters B if it was in A or B when it most recently left K, and

C if it was in C, D or E on that last visit. The choice of B and C here is by the

default arrows. History can be made to apply all the way down to the lowest level

of states by attaching an asterisk to the H-entry. Thus, in Fig. 11(b) the system will

enter the most recently visited state from among A-E, overriding both defaults.

One can achieve effects in between these one-level/all-levels extremes by addi-

tional H-entrances. In Fig. 12 the system will enter B if its last visit to K was

actually to G, or that one of C, D or E last visited, otherwise. In this way only the

default arrow to C is overridden by the history. For specifying more complex notions

of history one could use temporal logic, as discussed in Section 6.3.

The dispkzys state is now enriched to include updating capabilities for both alarms

as well as for the general time/date combination. Entering update modes is achieved

via c, with a 2-second continuous depressing required in the time/date update mode.

In all cases, depressing b brings control back to the previous display. The situation

of displays so far (including the addition of an H*-entrance, modifying the earlier

decision to return to time after an alarm beep) is given in Fig. 13.

The next step is the refinement of these updating modes. The statecharts for these

are given in Figs. 14 and 15. In both cases, the additional exit via c could not have

been given on the previous level in the naive way of Fig. 16(a), since c does not

apply to the whole of update. However, in such a case one uses the notation of Fig.

16(b) to illustrate the fact that c applies to certain parts of update, to be specified

later. Indeed, zooming out of, say, Fig. 14, would result in the likes of Fig. 16(b),

not 16(a).

We should say something about the H-arrows in Figs. 14 and 15. Depressing d
in any of the updating substates causes exit (but not exit from the encapsulating

superstate) and immediae entrance to the most recently visited substate, i.e., that

just left! In the case of Fig. 14 this d-arrow replaces nine d-arrows, one for each

substate. For the time being, these d-arrows are merely no-op’s, but, as discussed

later, they actually are responsible for the updating itself, and would require one

additional level of states to specify how each pressing of d boosts the appropriate

internal setting by one unit.

Statecharrs: A visual formalism for complex systems

‘ ‘jo
alarm 1

F/i

b H
off

d d

on

(b)

Fig. 10.

G

A 0
d B

Q
F

d

C

0

0
0 E

(0)

.\
\a

llorm 1

239

G
4 *

F

C d r 0

0
0

E

(b)

Fig. 11.

i

K
b H

G

A

0

3

d

B

ho HC -

0

0
Cl

E

Fig. 12.

240 D. Hare1

-

displays

stopwatch

cl
alarm 2

e.

b c t I

c J

Fig. 13.

L
. . .

wait

. . .

bpdate

man c hr o-0
C C

k 10 00 min

Sf?C -x C

c 1
min

%F d

I b time s-a
C

. . .

1
Fig. 14.

Statecharts: A visual formalism for complex systems 241

- min - min -

Fig. 15.

\ J L J
(a) (b)

Fig. 16.

We allow for an economical representation of arrows with common sources,

targets or events, as in Fig. 17. Note that the variant of Fig. 17(c), in which the

arrows are reversed, is a contradiction to the desired determinism of the system.

Clearly, more subtle contradictions can occur as a result of the ‘deep’ character of

statecharts, and should be carefully avoided. For example, Fig. 18 shows an (Y

contradiction from A, resulting from the fact that the possible transitions leading

out of a state are those emanating from its periphery, as well as those emanating

from any of its ancestors’ peripheries. Figure 18 also contains a default contradiction

upon entering B via p. Had the default arrow entering D been entirely contained

within the area of C, there would have been no problem; it would only have

influenced the entrance to C via y. This fact is a consequence of our area-dominated

graphical representation. (As it is, y is underspecified, since C contains no default.)

i
a . &by . .i

(a) (b)

Fig. 17.

242 D. Hare1

Fig. 18

3. Orthogonality: Independence and concurrency

The capabilities described in the previous section represent only one part of the
story, namely, the XOR (exclusive or) decomposition of states, and some related
concepts and notations. In this section we introduce AND decomposition, capturing
the property that, being in a state, the system must be in all of its AND components.
The notation used in statecharts is the physical splitting of a box into components
using dashed lines.

Figure 19 shows a state Y consisting of AND components A and D, with the
property that being in Y entails being in some combination of B or C with E, F

or G. We say that Y is the orthogonal product of A and D. The components A and
D are no different conceptually from any other superstates; they have defaults,
internal transitions, etc. Entering Y from the outside, in the absence of any additional
information, is actually entering the combination (B, F) by the default arrows. If

Y

A

Fig. 19.

Statecharts: A visual formalism for complex systems 243

event (Y then occurs, it transfers B to C and F to G simultaneously, resulting in the
new combined state (C, G). This illustrates a certain kind of synchronization: a
single event causing two simultaneous happenings. If, on the other hand, /.L occurs
at (B, F) it affects only the D component, resulting in (B, E). This, in turn, illustrates
a certain kind of independence, since the transition is the same whether the system
is in B or in C in its A component. Both behaviors are part of the orthogonality of
A and 0, which is the term we use to describe the AND decomposition.

Figure 20 is the conventional AND-free equivalent of Fig. 19. The reader will no
doubt realize that Fig. 20 contains six states because the components of Fig. 19
contained two and three. Clearly, two components with one thousand states each
would result in one million states in the product. This, of course, is root of the
exponential blow-up in the number of states, which occurs when classical finite-state
automata or state diagrams are used, and orthogonality is our way of avoiding it.

Note that the p-transition from C to B has the condition “in G” attached to it,
with the obvious consequences, shown explicitly in Fig. 20. Thus, while Y has
indeed been split into two orthogonal components, there will in general be some
dependence. The “in G” condition causes A to depend somewhat on D, and indeed
to ‘know’ something about the inner states of D. Formally, orthogonal product is
a generalization of the usual product of automata, the difference being that the
latter is usually required to be a disjoint product, whereas here some dependence
between components can be introduced, by common events or “in G”-like condi-
tions.

Fig. 20.

One slightly bothersome notational problem is the lack of an appropriate location
for the name “Y”. The product state Y will, in general, lie within some superstate
2, to which the area outside the borderline of the (A, D) box ‘belongs’. Of course,
it is possible to use an additional box as in Fig. 21(a). We prefer to try managing
without the name Y or simply to attach it to the outside as in Fig. 21(b).

244 D. Hare1

(0)

Fig. 21.

(b)

An obvious application of orthogonality is in splitting a state in accordance with

its physical subsystems. This typically occurs on a very high level of the specification.

In an avionics system, for example, one might have a general-mode component,

and orthogonal components for subsystems, such as the radar. An overly simplified

first attempt might look like Fig. 22.

AVIONICS SYSTEM

-general - mode radar abc-system

Fig. 22.

subsystems

Before showing where orthogonality occurs in the watch example, let us complicate

matters slightly by discussing exits and entrances to orthogonal states. Observe Fig.

23, which is a possible interface description of the state Y of Fig. 19 (internal

transitions have been omitted for simplicity). The split 6 exit from J illustrates a

simple explicit indication that upon occurrence of 6 the combination (B, E) is

entered. An a-event in K causes the system to enter (C, F); C by the arrow and

F by default, and a v-event from J causes entrance to the default (B, F). A p-event

at L causes entrance to the combination of C with the most recently visited state

in 0, and an w-event in combination (B, G) causes transfer to K. An alternative to

Statecharts: A visual formalism for complex systems 245

: . :

Fig. 23.

thjs last possibility is to replace one of the outgoing branches of the merging arrows

by a condition, as in the q-arrow from F, applicable actually only in (B, F). The

O-arrow from C, on the other hand, is a typical ‘exit independently’ transition: it

states that the product state Ax D is left and K entered, depending only on the

fact that the A component is actually C. The most general kind of exit is the c-arrow

causing control to leave Ax D unconditionally. It is perhaps worth following up

Fig. 23 with its zoom-out, in which stubbed entrance arrows are used when the

entrance crosses the state boundary (that is, when it does not rely on the default).

See Fig. 24.

: :
Fig. 24.

246 D. Hare1

Figure 25 contains a refinement of the stopwatch display state of Figs. 9 and 13

using orthogonality, and should be self-explanatory. In it, regular and lap are two

kinds of displays and zero is the special state in which the stopwatch is off but in

its initial position. This description could have been the outcome of a separate

person or group dedicated to specifying the behavior of the stopwatch.

L
. . .

time
a . . .

itopwotch

I run on

1

8
lb b
I
I off

Fig. 25.

Orthogonality appears in the Citizen watch on the high levels too. One might

start a top-down behavioral specification of the watch, accounting for battery

insertion and removal, as in Fig. 26, and then decide (see Fig. 27) that the alioe

state is to consist of six orthogonal components: a main component containing

displays and alarm-beep modes, one component for the enabled/disabled status of

each of the alarms and the chime (the latter containing the chime-beeping state

too), one for the power status, and one for the light. The resulting levels of the

statechart are given in Fig. 28, where the main component of the alioe state has

been described in detail earlier.

Citizen quartz multi-alarm III

batt. inserted

Fig. 26.

Statecharts: A visual formalism for complex systems 241

alive
r

main I alarm I- 1 chima-
1 stotus 1 status

Ilight ’

I
I

I

I

-
I

:

i
I

-

I- ---a p----__
I alarm 2 -

I
I power

, status I

I I I

LJ

I I I
\ I I

Fig. 27.

Although the two-state light component looks rather innocent, it is actually quite

subtle because of its scope. Orthogonality of the component on this level prescribes

that depressing b, say, in the update state of Figs. 13 and 14 wiU simultaneously

turn on the light and cause the system to exit the updating state. We shall see even

more interesting combinations later.

Note that the disabled/enabled status of the alarms and the chime are directly

linked to the corresponding of/on substates of displays; this is one way of modeling

a display change and its ‘hidden’ consequences. Of course, there are other ways,

and constructing statecharts, like writing programs, should encourage many

possibilities, depending, among other things, also on personal style.

At this point, the situation permits the conditions Pl and P2 for the beeping

alarms to be made more precise. For example “alarm1 enabled” is to be replaced

by “in alarm 1 -status.enabled”.

Note that our previous H-entrances (e.g. in Figs. 13 and 25) can no longer be

interpreted without reservation, as “enter most recently visited”. Now that we have

catered for battery removal and death within the specification, these attain a more

sophisticated meaning whereby history is to be ‘forgotten’ if dead has been entered

in the meantime. To deal with this more complex historical criterion we use the

special actions clear-history(state) and clear-history(state*), which cause the forget-

ting of recently visited states on the first level, or all levels, respectively, of state.
(The combination clear-history is abbreviated as clh.) Once forgotten, H-entrances

do not apply, and defaults are employed. We have chosen to attach the action to

the transitions entering dead, to the right of a “/“, as discussed in Section 5 below.

Here are two final features of the Citizen watch that seem to nicely illustrate the

painless way certain kinds of changes can be made to statecharts. We can think of

these features as being handed down to the team of specifiers/designers from above

at a late stage in the process of specification. The first is a beep-testing feature, and

the second involves a 2-minute automatic return to time from all displays other

than the stopwatch, on condition that no button has been depressed in the interim.

As to the beeper test, depressing both b and d causes a healthy beeper to beep.

Clearly, this test, modeled in detached form in Fig. 29 (assuming, for simplicity,

C
iti

ze
n

qu
ar

tz

m
ul

ti
-a

la
rm

II

I

al
ar

m

t -
st

at
us

F
ig

. 2
8.

Statecharts: A visual formalism for complex systems 249

Fig. 29.

that 6 and d cannot be depressed simultaneously), is applicable in some states of

the watch and not in others. For example, it is obvious that it should not be relevant

in the dead state and probably not in the other beeping states either. The claim

now is that a behavioral designer of the watch can attach this piece of the description

as an orthogonal component to whichever portion desired. One reasonable choice

might be the time display mode, as in Fig. 30. The significance of this kind of

time
I
beep-test

0 f
1
I

Fig. 30.

decision should be clear: the test will work only when the system is in time, in this

case. As it happens, the beep-test of the author’s actual watch is applicable precisely

in both the time and date states and, curiously enough, also throughout the general

update sequence. It is not applicable (though it took the author quite a while, and

required some strenuous finger-twisting, to discover the fact) in the 2-second wait

period. A new box was therefore drawn around the relevant portions, their common

property being the applicability of the beep-test, and the test itself was attached

properly to it. See Fig. 31. We might add here that Citizen’s documentation of the

watch lists both the light feature and the beep-test in the same way: if you press

so-and-so this-and-that will happen; no indication of the scope is provided, despite

the major difference between the two.

As to the second feature, here life is even easier: the addition involves merely

drawing another box around the relevant displays, with the appropriate event and

condition on the outgoing arrow. Figure 31 (see fold-out) contains the full statechart

of the watch so far.

250 D. Hare1

It is instructive to work through certain linear (or branching) sequences of events,

called scenarios, and observe their effects as prescribed by the statechart. For

example, assume the system is in the man updating state (see Fig. 31), and that,

for some reason, the user has an urge to try out his beeper. Suppose he depresses

d and b in that order without releasing either of them. The regular component says

we shall end up in time (with the month updated one step, although this fact does

not show up in Fig. 31), the beep-test component says we shall end up in the beep

state, and, finally, the light component (orthogonal on a higher level to the other

two) says we shall end up with the light on. This is in fact quite the case; we shall

end up in time, one month ahead, with the beeper beeping and the light on!

As a small example of a subtle anomaly of the Citizen watch, it so happens that

the continuous beeping during a beep test stops upon depressing a and resumes

upon letting go. Figure 32 shows a refinement of the beep state capturing this fact,

but it is not included in Fig. 31.

Fig. 32.

It should be noted that neither the time elapsing activity itself nor the internal

values of the time, date, and alarm settings are included in Fig. 31. These parts can

be modelled appropriately, the first as an additional component orthogonal to the

alioe state and the latter in the form of one extra level of states within the three

update states (cf. Figs. 38 and 39 and the accompanying text in Section 6.1).

Alternatively, one can regard these as involving variables that change values, and

postpone their specification to the activity part of the system; see Section 5. Also,

no mention is made of the contents of displays, though some of the state names

are suggestive; this also is taken up in Section 5.

4. Additional statechart features

Here are a number of features that are part of the basic statechart formalism, but

did not show up in the watch example.

I I
.

n I -status 1 chime -status 1 light

I I

disabled

d d x ml
)

(in,;;;ml

enabled

I
I ---_-_

n 2-status

lin chime

/clh (main*)

7

Fig. 31

Statecharts: A visual formalism for complex systems 253

4.1. Condition and selection entrances

There are two circled connectives, similar to the H, for abbreviating more compli-

cated entrances to substates of a superstate than a simple direct arrow. The first is

a C, for conditional, and is illustrated, for a particularly simple case, in Fig. 33. Here

33(b) can replace 33(a). If the actual conditions and/or the topology of the arrows

are too complex, one can omit the details from the chart and use the simple

incomplete form of Fig. 33(c). The user will have to supply the full details separately,

and a computerized support system for statecharts would be able to show 33(c) but

would enrich it to 33(b) on request.

tb)

Fig. 33.

(cl

The second connective is S, for selection. Selection occurs when the state to be

entered is determined in a simple one-one fashion by the ‘value’ of a generic event,

so that the event is actually the selection of one of a number of clearly defined

options and the specifier has chosen to model those options as states. Consider,

say, a computerized storage system connected with a display, around which there

are four keys marked type, name, qty and place, pertaining, respectively, to the type

of objects stored, their code name, quantity and physical placement. A typical

updating procedure would allow the user to select an option to be updated by

pressing the appropriate key and then updating it, possibly repeatedly. Figure 34(a)

models the situation, and Fig. 34(b) shows how the selection option (and the unified

history entrance) simplifies things. The user will have to specify the event selection

as being the disjunction of the four lower-level events, as well as the association of

each of them with the appropriate state, so that the S-entrance becomes well-defined.

4.2. Delays and timeouts

The present formalism treats time restrictions using implicit timers, as per the

exits from date and alarms-beep in Fig. 31. Formally, this is done using the event

254 D. Hare1

I
updatinq

:
1 selection

1

Fig. 34.

expression timeout(euent, number), which represents the event that occurs precisely

when the specified number of time units have elapsed from the occurrence of the

specified euent. The aforementioned exit from dare, for example, would formally

appear as timeout(entered date, 120).

However, the need to limit the system’s lingering in a state is something that

occurs repeatedly in the specification of real systems, especially real-time systems,

and it seems worthwhile to supply a special notation for this, a graphical one if

possible, and one that makes it obvious that this is a property of the state. Figure

35 shows the notation we use, including a squiggle to indicate that the state comes

with a bound, an indication of the bound itself, and a generic event that stands for

timeout(entered state, bound), where the state is the source of the transition, and

the bound is its specified bound.

Actually, we allow lower bounds too. In general, the syntax of the specification

attached to a squiggle is At, <At,, providing lower and upper bounds on the time

in a state. Either one of the Ati can be omitted, as is done in the state of Fig. 35.

Fig. 35.

Statecharts: A visual formalism for complex systems 255

The significance of the lower bound is that if they are to cause exits, events do not

apply in the state until the lower bound is reached.

4.3. Unclustering

The purpose of this subsection is simply to call the reader’s attention to the

possibility (useful in both manual and computerized use) of laying out parts of the

statechart not within but outside of their natural neighborhood. This conventional

notation for hierarchical description has the advantages of keeping the neighborhood

small yet the parts of interest large. See Fig. 36. It is a necessary option when the

system under description is large.

We are well aware of the fact that taking this to the extreme yields and/or trees,

thus undermining our basic area-dominated graphical philosophy. However, adopt-

ing the idea sparingly can be desirable.

Fig. 36.

5. Actions and activities

There is actually almost nothing in the statecharts presented above, including the

extensive Fig. 31, connecting the states, transitions and other objects appearing

256 D. Hare1

therein with the ‘real’ watch! Apart from our convention regarding the use of the

letters a, b, c and d for the depressing of the ‘real’ buttons, we only used suggestive

words like displays, beeps, on and 08 Who says that the watch beeps or displays at

all? Who says it even keeps the time?

Obviously, what ‘pure’ statecharts represent is the control part of the system,

which is responsible for making the time-dependent decisions that influence the

system’s entire behavior. However, so far, the reactivity part was expressed only by

the system changing its internal state-configuration in response to incoming or sensed

events and conditions. How else does it respond? How does it influence other

components of the system? It seems obvious that what is missing is the ability of

statecharts to generate events and to change the value of conditions. These can be

expressed by the notation “. . ./S” that can be attached to the label of a transition,

where S is an action carried out by the system. We shall reserve the word action
for split-second happenings, instantaneous occurrences that take ideally zero time.

For us, sending a signal takes zero time, as does a conventional assignment statement.

Many actions are output events of the whole system, like “swallow ticket” and

“send current balance to display”. Not all, however. If we want a transition labelled

CY in one component of the statechart to trigger another transition in an orthogonal

component, without necessarily having any immediate external effects, we can simply

label the first cu/S and the second S. Upon sensing (Y the first transition will be

taken and the action S will be carried out, generating S as an event that can be

sensed elsewhere; and indeed, in the other component the S transition will be taken

instantaneously. Thus, events and actions are closely related: the distinction is almost

precisely that drawn between input and output events elsewhere.

However, actions are not enough. We need activities, which are to actions what

conditions are to events. An activity always takes a nonzero amount of time, like

beeping, displaying, or executing lengthy computations. Thus, activities are dur-

able-they take some time-whereas actions are instantaneous. In order to enable

statecharts to control activities too, we need two special kinds of actions to start

and stop activities. Accordingly, with each activity X we associate two special new

actions, start(X) and stop(X), and a new condition active(X), all with the obvious

meanings. To start the beeping upon entrance to, say, the alarms-beep state, one

can attach the action start(beeping) to the entering transitions (or, alternatively, to

the entrance to the state), where beeping is the required activity.

Obviously, in order to describe such ‘real’ actions and activities one has to assume

some physical and functional description of the system, providing, say, a hierarchical

decomposition into subsystems and the functions and activities they support. This

description should also identify the external input and output ports and their

associated signals. Statecharts can then be used to control these internal activities.

Although we are aware of the fact that achieving such a functional decomposition

is by no means a trivial matter, we assume that this kind of description is given or

can be produced using an existing method. what we want to emphasize here is our

Statecharts: A visual formalism for complex systems 257

conviction that it is most beneficial to directly link these aspects of the system’s

overall description to the underlying statechart.

To make the idea more precise, a statechart can contain instructions to carry out

actions and activities by a simple extension of the ideas in the so-called Mealy and

Moore-automata (see e.g. [17]). In the one, actions are allowed along transitions,

and in the other they are allowed in states, usually meaning that the action is to be

carried out upon entering the state in question. We shall also allow the association

of actions with the exit from a state, and will also allow to specify that an activity

will be carried out continuously throughout the system’s being in the state. In other

words, saying that the activity X is carried out throughout state A is just like saying

that the action start(X) is carried out upon entering A, and stop(X) upon leaving

A. We thus enrich the transition labelling to be of the form a(P)/& where (Y is the

event triggering the transition, P the condition that guards the transition from being

taken when it is false, and S the action (or output in automata-theoretic terms) to

be carried out upon transition. (We can actually allow Boolean combinations in

each component, but we shall not get into a detailed syntax here.)

In Fig. 37, for example, if the system is in (C, D) and event (Y occurs, the new

state-configuration will be (B, D), but the two actions S and V will be carried out,

simultaneously, upon entrance. Notice how concurrency of actions is induced by

the nested structure of states. Action S will obviously not take place if a transition

from state B to F occurs. Now, if event y occurs, the system exits B and A, causing

actions W and T to take place, but also causing the ‘internal’ action p to be carried

out, which in turn, sensed as an event, causes a transition in the orthogonal

component. Thus, p is an output event in the left-hand component and an input

event in the right-hand one. The new state-configuration will therefore be (C, E)

and action U will, therefore, also be taken, and at the very same time. Defining the

formal semantics of these action-enriched statecharts is quite a delicate matter. See
Section 7.

cl
entry S
exit @,T
throughout X

Fig. 31.

258 D. Hare1

The reader should now be able to use our informal descriptions in order to
formulate most of the actions and activities that the watch carries out and attach
them to their rightful places in the statecharts given above. For example, the
appropriately identified action of starting to continuously display the status and
internal setting of the first alarm will obviously be associated with the entrance to
state alarml, and terminating the display will be associated with several of the exits
thereof. (Why not simply associate the durable activity with being in the alarm1
state?) Similarly, the activity start-half-second-beep will be associated with the two
transitions within the s~watch.run state component, since that is precisely what
happens when the stopwatch is turned on and off. Clearly, all these actions and
activities must also be associated with the various physical components, such as
displays, beepers, internal processors and timers.

We should also reemphasize that we do not deal here with the problem of finding
the right formalism for specifying the activities themselves. One possibility that
comes to mind in case the activities are sequential in nature, is simply to use a
conventional programming language. If the activities themselves can involve reactive
behavior, we may use separate internal statecharts to control their internal behavior.
This, in effect, results in a hierarchy of activities, with a statechart controlling the
reactive behavior of each, in terms of its own input and output events and its
subactivities. The STATEMATE system, mentioned in Section 9, contains a
graphical formalism for activities, activity-charts, and a corresponding one for the
physical/structural aspects of the system under description, module-charts. Both
were designed to fit in nicely with the behavioral aspects, which are described using
statecharts, but they are beyond the scope of this paper. See [l].

6. Possible extensions to the formalism

This section contains preliminary ideas on a number of more advanced features
that are being currently investigated as possible additions to the basic statechart
formalism. The reader should take this into account. For most we have neither a
final recommendation for a syntax, nor a satisfactory formal semantics. They are
brought here because, in the author’s opinion, they represent significant potential
strengthenings of the statechart formalism as a tool for specifying real systems. In
one way or another, fragments of all of these have been used manually in the
experimental projects mentioned later.

6.1. Parameterized states

In many cases (e.g., alarm1 and alarm2 of Fig. 31) different states have identical
internal structure. Some of the most common ones are those situations that are best
viewed as a single state with a parameter.

Statecharts: A visual formalism for complex systems 259

Consider a refinement of state update.lmin, in which the updating by d is to be

captured. An obvious candidate is that of Fig. 38, in which the condition tests the

current time T, and the unspecified event a denotes T crossing a minute borderline.

We would like to economize by parameterizing the states, and could choose a

notation such as that of Fig. 39. This is actually an example of a ‘parameterized-or’,

and one can think of cases in which a ‘parameterized-and’ would be helpful. An

example that comes to mind would be the specification of a thousand individual

telephones connected through a central network. A portion of the relevant statechart

could be given as in Fig. 40. In both cases, however, one should keep in mind that

often an underlying programming language with its variables and rich data structures

is the best tool for specifying complex kinds of parameterization.

.

. . .
IOmin C

. . . I-

. . .
IOmin ’

Fig. 38.

lmin, iet0..93

i+t (3 mod 10

J set

C

SeC Y C

Fig. 39.

260 D. Hare1

telephone - i
<.‘--
receiver J

ifted(i#j)

receiver j
replaced 9/ on-hook

receiver i
replaced

Fig. 40.

4.2. Overlapping states

The interrelationship between the states in all the statecharts presented thus far

is that of an AND/OR tree; actually an AND/XOR tree. However, there is absolutely

no deep reason for this, and statecharts need by no means be entirely tree-like.

While the human mind seems to perform well on tree-like hierarchical objects, we

definitely do not rule out clustering which is more complex. For example, Fig. 41

shows a situation in which state C has two parents. The reason for doing this might

r---Y--- pf=- / 8 0 0

E

T
L-J

0 C

F
d 0

Fig. 41.

Statecharts: A visual formalism for complex systems 261

be conceptual similarities between the involved states, or merely the pragmatic

desire to economize when describing joint exits such as the two transitions appearing

in the figure. What is really happening is that states A and D are now related by

OR, not XOR. Of course, too much of this kind of overlapping will burden the

specification, with incomprehensibility possibly outweighing economy of descrip-

tion. In such a case, one could resort to two copies of C.

Overlapping states, however, are beneficial not only in turning XOR’s into OR’s.

Consider a state A, with substates, internal transitions, etc., that ‘lives alone’ under

some circumstances, but is joined in ‘orthogonal marriage’ with a state B under

others. Figures 42 and 43 show two ways of describing this situation. In the first A

Fig. 42.

Fig. 43.

appears twice-obviously not an entirely desirable situation, especially if A is large

and complex. In the other B contains a special new state that says “this is not really

a B state at all”-again, a rather artificial solution. Our recommendation is to use

overlapping states, as in Fig. 44. All the transitions appearing there are quite

unambiguous, as the reader can verify. In particular, the P-entrance is clearly an

entrance to the product of A, and B (which, by the defaults is to the pair (C, E)),

not to A2 alone, which is what the LY does. The s-exit leaves D regardless of whether

it is matched with a state from B or not, whereas the w-exit has the condition about

being in B attached.

One problem with this use of overlapping is in the ambiguity of entrances to A’s
substates, like D. It is not at all clear what a transition entering D is supposed to

262 D. Hare1

ie
’ E
I d

i

1 G 0
F

I 0
I

Fig. 44.

mean. We suggest refining the elementary graphical notation of arrows crossing

state borderlines, so that one can waive the pleasure of entering a state. Figure 45

shows two entrances to D, the y causing entrance to (0, E) and the 6 causing

entrance to D alone.

Overlapping states can be used economically to describe a variety of synchroniz-

ation primitives, and to reflect many natural situations in complex systems. Several

examples appear in [6]. However, as discussed further in Section 7, overlapping

states cause semantical problems, especially when the overlapping involves

orthogonal components. A first suggestion for a syntax and semantics for overlapping

states appears in [20]. We are, however, fully convinced that the addition of an

appropriate version of overlapping states to the basic formalism will greatly enhance

its potential.

Fig. 45.

Sratecharts: A visual formalism for complex systems 263

6.3. Incorporating temporal logic

Temporal logic (TL) is used quite extensively in the specification of concurrent

programs; see [24,27]. We are of the opinion that TL can be used beneficially

together with statecharts in more than one way. It is possible to specify ahead of

time many kinds of global constraints in TL, such as eventualities, absence from

deadlock, and global timing constraints. Then one would carry out a statechart

specification of the system and attempt to verify that the statechart-based description

satisfies the TL clauses. This approach would seem to require that one develop

proof methods using statecharts as the description language and temporal logic as

the assertion language. One could attempt to extend methods developed for verifying

conventional state-machines against TL formulas, such as those in [S].

Dually, another possibility would be to synthesize a ‘good’ statechart from TL

specifications. We feel that this represents an important research topic, since many

of the people that were involved in the avionics project mentioned in Section 9

displayed a linear-like scenario-based mode of thinking. They were able to state

many desirable scenarios, such as firing a missile or updating the aircraft’s location,

in precise detail, describing things that they wanted the system to do eventually.

Such scenarios are easily described using TL, and it would seem beneficial to be

able to derive a reasonable statechart description from a large set of scenarios given

in TL. (Zave’s sequence diagrams [33] are tailored for scenario-based descriptions

too; see Section 8.)

Finally, in the statecharts themselves there are conditions that a specifier might

want to use that refer to the system’s past behavior. We have supplied the simple-

minded history entrance for that purpose, but it is obvious that one would like to

be able to specify more complex things too. For example, instead of shutting off

the history using the clear-history action, one could do away with the history entrance

in, say, the chime state of Fig. 31, and enter chime using:a conditional entrance

with the following condition for the on state, and a similar one for the o$ state,

and with an ‘otherwise’ clause leading to of, the default. The formula is taken from

the past fragment of temporal logic:

(i(in chime) A l(in dead)) since (in chime.on).

It states that the transition is to be taken if sometime in the past we were in

chime.on, but have not been in chime or in dead since.

6.4. Recursive and probabilistic statecharts

Although we have seen little need arise in practice, it is worth noting that one

can introduce recursion (or, in automata-theoretic terms, context-freeness) into

statecharts, just as augmented-transition-networks [32] (see also [31]) introduce it

into conventional state diagrams. This can be done by specifying the name of a

separate statechart, the present one being a special case, on a transition arrow. Such

264 D. Hare1

an extension would require a notation for terminal states, say a double state-

boundary, not only for initial ones (defaults).

One might also want to somehow add probabilism to statecharts. One way of

doing this would be to allow nondeterminism (say, in the forms outlawed in the

discussion around Fig. 18), and then to specify a bias on the coin to be tossed when

it arises. This, in fact, would really be tantamount to considering ‘Markov-charts’,

which would be to classical Markov chains what statecharts are to the classical

transition diagrams of finite-state automata.

7. Semantics of statecharts

The statechart formalism turns out to be quite a challenge when it comes to

providing formal semantics, much more so than simple finite-state automata. The

main difficulty is not in the depth of states or the orthogonality constructs themselves;

these (as claimed in [121) can be dealt with by a translation into ordinary automata,

although even there delicate problems arise. Consider Fig. 46. The semantics must

be able to conclude that when (Y occurs in (A, B), the system ends up in (C, D),

but that one more (Y leads not to (E, F) but, nondeterministically, either to (E, H)

or to (G, F). The more difficult problems arise with the introduction of events and

conditions that are generated within the statechart itself, and are sensed in orthogonal

components.

-M-e----- -------__

d
H

I
J /

Fig. 46.

To a semanticist this is obvious. The problems with concurrency stem from the

cooperation mechanism: shared variables and their access, communication over

channels, handshake rendezvous’, etc. In this respect, statecharts employ a broadcast

communication mechanism. One part generates an event (by an action that is placed,

say, to the right of a “/” on a transition), and all other parts sense it, acting in

response if so specified. Clearly, upon sensing such an event, another component

might generate a new event, causing yet others to be generated. Cycles, like that of

Fig. 47, have to be dealt with by the semantics, presumably rendering them undefined.

Statecharts: A visual formalism for complex systems 265

Fig. 41.

Not only the events generated by actions cause problems, but also those generated

by the very dynamics of a statechart. We allow statecharts to refer to the condition

“in state”, and to the events that signal changes in that condition, “entered state”

and “left state”. At first sight these seem to be very well defined, the first as a time

span (durable happening) and the others as instants in time. However, Fig. 48

illustrates a situation in which it is not quite clear what the outcome should be.

Starting in (A, C, E), if LY occurs, should we end up in (B, C, E), (B, D, E), (B,

C, F), or (I?, 0, F)? Our intuition says, perhaps, (B, C, F), but a formal semantics

must supply all the answers.

Fj’

i
A I

a

b B

Fig. 48.

Finally, the desire to allow simultaneous events can cause problems, especially

if we wish to negate events in order to specify that they have not occurred simul-

taneously. In Fig. 49, for example, the meaning of the two a-exits seems obvious,

but do we end up in D if y occurs in A?

Combining generated events, internal events and conditions, and simultaneous

events and their negations causes extremely delicate problems, whose solution is

far beyond the scope of this (already quite lengthy) paper. We refer the reader to

[15], in which both a formal syntax and a version of formal operational semantics

is given for the language, including these features. We shall only provide some hints

here as to the basic notions and ideas used therein.

One first notices that any two states in a statechart can be related in one of three

ways: exclusive, orthogonal or ancestoral. The best way to see this is to consider

266 D. Hare1

Fig. 49.

the AND/OR state tree. A and B are exclusive (respectively orthogonal) if they are

not on the same path and their least common ancestor is an OR-state (resp., an

AND-state), and they are ancestoral if they are on the same path. Using these

definitions one defines a legal (partial) conjigurution, to be essentially a set of

mutually orthogonal states, and a full configuration to be a maximal such set. A

basic configuration is one all of whose states are atomic (no offspring).

The statechart is given by a state tree together with a set of transitions, each of

which is an ordered pair of configurations (a source and a target) labelled with

some legal (Y (P)/S combination. Defaults and history entrances are appropriately

included. The heart of the semantics of [15] is the definition of a function

nextstep(X, C, E), which, for a full basic configuration X, a set of (external) condi-

tions C, and a set of simultaneous (external) events E, provides the set of next

possible full basic configurations. (If there are more than one, the system is nondeter-

ministic-an error in the pragmatic sense of Fig. 18 and its discussion, but the

standard general case in the framework of the formal semantics.)

The semantics assumes that each step represents some time interval in which new

internal events may be generated and responded to. The main steps in defining

nextstep(X, C, E) are the following. First, all relevant transitions are selected. This

involves analyzing their trigger (the part of their label to the left of the “/“) to see

whether indeed it is triggered by E, and their source configuration to see whether

it is ancestoral to a subconfiguration of X. For each such transition, the semantics

takes off separately, analyzing the consequences of applying it (such as the con-

sequences of the action part of its label), and finding new transitions that become

relevant as a result. This process is continued until it closes off, reaching a stable

and consistent situation. Then the configuration X is replaced by an appropriate

X’, which is obtained by applying the overall effect just determined to the appropriate

ancestoral configuration, and then ‘diving’ downwards, using default entrances to

reach a full basic configuration. The set of all such X’ is the final result of nextstep.
Of course, the process of computing the stable and consistent situation is the tricky

part, and its details can be found in [15].

History entrances cause no essential problems, and incorporating them into the

semantics entails remembering one state for each state whose area includes an

H-connector, and one basic configuration if it includes an H*-connector. The C’s

and S’s are merely abbreviations of other constructs.

Statecharts: A visual formalism for complex systems 267

As mentioned earlier, for the advanced features of Section 6 (with the exception

of overlapping states; see [20]) we do not even have a satisfactory syntax, let alone

a formal semantics.

8. Related work

The state/event approach, in the form of finite-state machines or state transition

diagrams, has been suggested numerous times for system specification. A small

sample of references includes [19,23], recommending state machines for the user

interface of interactive software, [8], recommending them for the specification of

data-processing systems, [7], for hardware system description, [28,291, for the

specification of communication protocols, and [9] for computer-aided instruction.

Many of these papers, and many later ones that have turned to other approaches,

have identified the problems associated with a naive use of conventional state-

machines or state-diagrams, especially the exponential blow-up in the number of

states. A good example of how these problems can cause one to simply give up on

the use of state-machines for system description is to be found in [21]. In the table

on p. 337 therein the authors claim that state-transition diagrams are hard to read,

difficult to draw and change, non-user-friendly, not good for stepwise refinement,

cannot be decomposed into executable code, and are no good for large complex

specifications.

The need for separate state-components is identified in [21], where the authors

recommend using separate diagrams related by ‘linkages’ (pp. 228-229). However,

as in so many of the ‘diagramming techniques’ of [21], linkages too are not given

any semantics, except to point out some subjective correspondence between linked

objects.

There have been a number of suggestions for formalisms involving communicating
finite-state machines. One of the main propositions of this kind is the CCITT

language for communication protocols, SDL. See, for example, [4]. The basic SDL

formalism enables one-level concurrency, consisting of a number of conventional

machines communicating by a broadcast communication mechanism. Input

messages are queued, output requests are peeled off the queue, and much of the

work in defining the language involves solving problems regarding the implementa-

tion of this communication mechanism. No workable way of introducing hierarchy

or depth has yet been put forward by the SDL group, and, as a result, even relatively

simple protocols have quite complex-looking SDL descriptions.

Augmented transition networks (ATN’s, see [31,32]) provide for hierarchical

state/event descriptions by allowing a transition in one machine to be labelled by

the name of another machine. When the transition is reached, the ‘called’ state-

machine is started, and the original transition is returned to when this machine

reaches a final state. This leads, of course, also to recursive state-machines (see

Section 6.4). This approach is definitely one way of introducing hierarchy into state

268 D. Hare1

machines, but might not always be the preferable one. In particular, there is no way

to introduce interrupt-driven behavior by relating events to high-level collections

of states, as does a transition leaving a superstate in a statechart, or to specify

event-based entries or exits that cut across levels of detail. The hierarchy of aug-

mented transition networks, therefore, is that of subroutines, and is therefore a much

more process-driven approach than an event-driven one. In addition, ATN’s do not

address the state blow-up problem at all, so that concurrency and synchronization

are not describable within the formalism.

In an interesting paper surveying flowchart techniques from a psychological point

of view, Green [lo] shows an example of high level states in a state-machine, with

transitions allowed to leave the contours of a state at any level. The semantics is

precisely that adopted in statecharts- namely, the event is regarded as an interrupt

applied to all low-level states within.

Many of the methodologies suggested for the specification of complex systems,

such as SADT [26] and HOS [ll], concentrate mainly on the structural and

functional aspects of these systems, and do not provide any dynamic semantics to

cover their precise behavioral aspects. Either explicitly or implicitly, these methods

recommend that the control be specified in some suitable programming language

or PDL. Usually, they provide only means for functional decomposition with some

data- and control-flow information. Consequently, approaches like those of [26,11],

when taken on there own without the addition of control-oriented code, are suitable

only for transformational systems. In [30] it is proposed that such methods be

augmented with conventional state-machines for behavioral control.

We now discuss a number of approaches that do provide solutions to the problem

of behavioral description of complex reactive systems. Since this is not a survey

paper, our comments will have to be extremely brief. Also, we have chosen only a

small subset of proposed methods, concentrating on those that are, in our opinion,

(i) sufficiently formal to yield direct implementations, full computerized simula-

tion or rapid prototypes, and

(ii) seem to be representative of particularly interesting approaches to the

problem.

Petri nets (see, e.g., [25]) might be considered one of the best-known and best-

understood solutions. They are graphical and precise, and come complete with an

impressive body of research, accumulated over a period of more than 20 years. They

are heavily event-driven and, by their very definition, allow for maximum concur-

rency. One of their drawbacks, however, is the unavailability of a satisfactory

hierarchical decomposition. Consequently, there is only one level of concurrency,

and the kind of high-level encompassing events that are applicable at once in many

lower-level states (or places) are not naturally specifiable. We feel that introducing

depth into the definition of a place in a Petri net, with transitions connected to

places on all levels, might be one way of overcoming this problem.

Mimer’s CCS [22] is a formal programming/specification language of algebraic

nature, and is also accumulating a large body of research, involving variations,

Statecharts: A visual formalism for complex systems 269

formal semantics and detailed comparisons to other languages. Among the main

characteristics of CCS are the adoption of recursion as the main control structure,

the availability of nested concurrency, and the naming and aliasing flexibility

provided by the use of variables for signals and communication channels. In fact,

CCS is emerging as something of a yardstick, against which to measure the features,

capabilities and power of new languages and approaches to programming and

specifying concurrency. It would seem that further work is needed in order to assess

the precise relationship between statecharts and the CCS language.

However, there are some interesting differences between languages like CCS or

Hoare’s CSP [161 and the statechart formalism. As already stressed above, statecharts

are very efficient when it comes to describing ‘interrupt-driven’ behavior, e.g., by

delineating a large set of states and specifying that they all react identically to the

occurrence of some event. To describe a similar situation in, say, CCS, we have to

explicitly add the branch representing this reaction to each of the relevant processes

(corresponding to states). Another main difference is the mechanism of communica-

tion between processes. In these languages, the basic communication mechanism is

a rendezvous, which enforces synchronization between a single sender and a single

receiver. The statechart communication mechanism, on the other hand, is based on

broadcast, whereby the sender may proceed even if nobody is listening. It also

forces all enabled listeners to accept and respond to the message simultaneously (if

a response is indeed specified). These two mechanisms are incompatible, in the

sense that it is difficult and cumbersome to implement any one in terms of the other.

It would be interesting to find out which of the two leads to more natural and

compact specifications of systems. A point worth mentioning, though, is that the

broadcast mechanism is not a crucial feature of the statechart formalism. It is

conceivable that a satisfactory version of statecharts could be defined with rendez-

vous replacing broadcasting, while retaining the other benefits afforded by the more

central concepts of depth and orthogonality.

Zave’s approach in [33] is to use sequence diagrams, which can be viewed as

Jackson’s tree-like representations of regular expressions [181, with events (inputs)

residing at the leaves. A specification of a system is a set of views, each one being,

in effect, a possibly large sequence diagram. To enhance flexibility and compre-

hension events can have aliases, and a special filter is responsible for managing

aliases and channeling input events to their relevant views. Sequence diagrams are

actually structured scenarios (see Section 6.3) and therefore they constitute a natural

way of specifying a system’s behavior: identify all desired scenarios with respect to

some class of events; their union is one view of the system’s behavior. Any sequence

of events not conforming to all views is illegal and therefore in error.

Concurrency, in Zave’s approach, is explicitly present only on the top level: views

are concurrent, and within a view there are only sequential, possibly nondeterministic

constructs. Any concurrency inherent in the described system is implicitly represen-

ted in the sequence diagrams by nondeterministic interleaving of actions of the

concurrent elements. We may thus relate Zave’s diagrams to statecharts by viewing

270 D. Hare1

the latter as folding and conjoining the diagrams together while making the concur-
rency explicit. This means that sequence diagrams can always be read off (even
automatically produced from) the corresponding statecharts, so that they essentially
have the same expressive power. However, the statechart formalism encourages the
user to explicitly identify the orthogonal and concurrent elements in the behavior
he wishes to specify.

It has been our practical experience that when users approach a completely
new system, they first specify to themselves a few scenarios, representing central
‘threads’ in the desired behavior. After experimenting for a while with these, they
gradually conceive of the patterns that control them, and at a certain point they are
ready to begin constructing statecharts, which compactly represent those patterns.
Thus, the two formalisms might be used in a complementary fashion.

Since Zave’s descriptions are taken also as ‘upper bounds’ on the behavior of the
environment (non-conforming input sequences are in error), one possible way of
merging the two approaches would be to use sequence diagrams as an assertion
language, or a constraint language, for verifying desired properties of statecharts,
as suggested for temporal logic in Section 6.3.

As far as programming languages especially tailored for real-time applications
are concerned, the ESTEREL language (see [3]) is one of the most intriguing. It is
motivated by concerns very similar to our own, and many of the resulting decisions
taken there are strikingly similar to those present in statecharts. Transitions, assign-
ment statements, signal transmitions, etc., are all assumed to be instantaneous, i.e.,
to take zero time. Durable happenings occur between events and while waiting for
them. Events are broadcast, and a process misses an event if it did not happen to
be attentive at the instant of occurrence.

One of the most interesting aspects of ESTEREL is the way it is translated, or
compiled, into conventional finite-state machines. The compiler analyzes possible
interleaving of events and prunes out impossible ones, a practice that often results
in automata that are smaller than those obtained by a naive product operation
applied bottom-up to the concurrent processes of the original program. This leads
one to wonder if the translation techniques of [3] might not be useful in designing
an optimizing compiler of sorts for statecharts.

9. Practical experience and implementation

The statechart formalism was conceived and developed while the author was
consulting for the Israel Aircraft Industries (IAI) on the development of a complex
state-of-the-art avionics system for an advanced airplane. This particular kind of
project can demand bewildering levels of competence from many people of diverse
backgrounds: pilots, electrical engineers, communication experts, software and
hardware professionals, defense and weapons experts, etc. These people have to
continuously discuss, specify, design, construct and modify parts of the system,

Statecharts: A visual formalism for complex systems 271

ranging from high-level system structure all the way down to implementation details.

The languages and tools they use in doing their work, and for communicating ideas

and decisions to others, has an effect on the quality, maintainability, and expedition

of the system that cannot be overestimated. Our experience in using the statechart

approach in this project has been very encouraging: people were able to ‘enter’ a

behavioral description of any portion of the system in almost no time, and the

turnover period for peer review and inter-group feedback has been unusually minute.

Statecharts are still used in that project as the main behavioral specification method.

In addition to the avionics project, the method is being used experimentally in a

number of software, electronics and semiconductor industries.

In all these cases the language is used manually, with all the inevitable consequen-

ces. We believe that a serious evaluation of the method, one that will uncover its

weaknesses and prompt modifications that will make it more fitting for real use in

various application areas, will depend to a large extent on the quality of a computer-

ized graphics-based tool, and especially on its efficiency and user-friendliness. Such

an implementation, called STATEMATEl, is in the final stages of construction at

a company called AD CAD (Advanced Computer Aided Design), incorporated in

Cambridge, Massachusetts. A prototype of STATEMATE is in beta-site tests, and

a commercially available version is planned for release in June, 1987.

The implemented system uses the statechart language in order to specify the

dynamic behavior of the system under development (SUD). In addition, it provides

two complementing views of the SUD, the structural view (describing physical

modules and channels), and the functional view (describing data-flow and activities).

The latter is based on a hierarchy of activities, each controlled by a statechart, as

discussed earlier. The three views are closely interrelated, and each is described

using a special kind of diagram-module-charts for the former and actioity-charts

for the latter. The system enables editing, testing for consistency and completeness,

as well as verifying a multitude of more sophisticated properties (such as the absence

of nondeterminism or deadlock). It also supports management functions, as well

as queries and reports of various kinds. One of the system’s main functions is the

ability to carry out a wide range of detailed simulations of the SUD, ranging from

one-step simulation to random-event interactive simulation, all carried out graphi-

cally, and simulating all aspects of the system’s description.

The details of this implementation are clearly beyond the scope of this paper.

However, the reader should be able to appreciate the multitude of ways in which

such a support system may aid the user. Moreover, there seems to be almost no

limit to the number and kinds of features that one might want in such an implementa-

tion. Desired graphical options range from smooth and useful zoom-capabilities to

self-topologizing, whereby the system arranges things in order to minimize, say,

arrow length and/or crossover (a feature not yet implemented), and desired query

options range from listing states with certain properties to presenting complex views

of the system, dominated, say, by events, or by time and actions rather than by

states.

212 D. Hare1

10. Conclusion

This plaper is based upon a number of theses:
(1) Reactive systems differ from transformational systems, and require different

approaches to their specification.

(2) An essential element in the specification of reactive systems is the need for
a clear and rigorous behavioral description, to serve as the backbone of development
from requirements specification all the way to user documentation.

(3) Statecharts provide one possible fitting formalism for specifying reactive
behavior.

(4) The future lies in visual languages and methodologies that, with appropriate
structuring elements, can exploit all the obvious advantages of graphical man-
machine interaction.

Validating these theses is something a scientific paper cannot really achieve, but
an effort has been made here to convince the reader that they are worthy of serious
consideration.

Considering thesis (3), we are convinced that people working with complex
systems have for a long time appreciated the simplicity and appropriateness of the
state/event approach but have lacked a formalism for it that possesses certain
elementary properties (such as depth and modularity) that are provided by most
programming languages and by many conventional approaches to the physical and
functional aspects of system description. The lack of these, as well as the exponential
blow-up syndrome and the inherent sequentiality of conventional state machines,
seem to have hindered serious use of states and events in the design of really large
systems.

As to thesis (4), we believe that before long scientists and engineers will be sitting
in front of graphical workstations with large (blackboard size?) displays of fantastic
resolution, carrying out their everyday technical and scientific chores. It is quite
fair to say that most existing visual description methods in computer science are
predominantly intended as aids. The ‘real’ description of the object is usually given
in some textual, algebraic form, and the picture is there only to help see things
better, and to assist in comprehending the complexity involved. Here we are suggest-
ing that visual formalism should be the name of the game; one uses statecharts as
the formal description itself, with each graphical construct given a precise meaning.
The language does not consist of linear combinations of icons or of one-level graphs,
but of complex multi-level diagrams constructed in nontrivial ways from a few
simple constructs. Textual representations of these visual objects can be given, but
they are the aids (e.g., for users lacking graphical equipment, or for applications
requiring textual reports), and not the other way around. See the discussion of
higraphs in [131.

We are in the midst of several research efforts aimed at evaluating the statechart
method in a number of diverse application areas, such as hardware components,
communication systems, and interactive software systems. In [6] we propose the

Statecharts: A visual formalism for complex systems 213

adoption of statecharts as a hardware description language, and in [2] for designing

communication protocols. Both papers present some rather encouraging results to
support these propositions.

Acknowledgments

I would like to thank the many people in the Israel Aircraft Industry who
influenced the initial development of the ideas presented herein. In particular I am
most grateful to J.Z. Lavi (Loeb) for introducing me to the problems and having
the insight to see that solutions were possible, to Y. Shai who was an indispensable
part of the development all along, and whose suggestions (such as to use dashed
lines, rather than solid ones, for AND, and a quartz watch for illustrating the
method) are present throughout, and to A. Kaspi and Y. Livne for presenting,
respectively, the avionics engineer’s and user’s points of view (to one who has
neither) in the most competent and patient way possible.

Discussions with and comments from A. Pnueli and R. Sherman have been very
useful and thought-provoking and have greatly helped shape the initial ideas into
their present form. In particular, Pnueli’s ideas concerning reactive systems have
served to pinpoint the problems that the paper addresses. Joint work with Pnueli
(to whom the term ‘reactive’ is actually due), R. Sherman and M. Politi on a variety
of related issues, including the semantics of statecharts and the functional view of
system development have served to clarify many matters. Comments from H.
Lachover, A. Pnueli, S. Ruhman and the ‘referees on previous versions of the
manuscript are most appreciated. Y. Barbut’s superb graphical work and likewise
C. Weintraub’s T,xing deserve special thanks.

References

[l] The languages of STATEMATEl, Internal Report, Ad Cad, Inc., Cambridge, MA, 1987.
[2] A. Bar-Tur, D. Drusinsky and D. Hare& Using statecharts for describing the communication between

complex systems, Department of Applied Mathematics, The Weizmann Institute of Science,

Rehovot, Israel, 1986.
[3] G. Berry and I. Cosserat, The ESTEREL synchronous programming language and its mathematical

semantics, in: S. Brookes and G. Winskel, Eds., Seminar on Concurrency. Lecture Notes in Computer

Science 197 (Springer, Berlin, 1985).
[4] CCIT’f (International Telecommunication Union), Functional specification and description

language (SDL), Recommendations 2.101-2.104, Vol. VI, Fast. VI.7, Geneva, 1981.
[5] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite state concurrent systems

using temporal logic specifications, ACM Trans. Prog. Lung. Syst. 8 (1986) 244-263.

[6] D. Drusinsky and D. Harel, Using statecharts for hardware description, CSSS-06, Department of
Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel, 1985.

[7] M.D. Edwards and D. Aspinall, The synthesis of digital systems using ASM design techniques, in:
T. Uehara and M. Barbacci, Eds., Computer Hardware Description Lunguages and their Applications
(North-Holland, Amsterdam, 1983) 55-64.

[8] A.B. Ferrentino and H.D. Mills, State machines and their semantics in software engineering, hoc.
IEEE COMPSAC ‘77 Conference (1977) 242-251.

274

[91

r.101

[ill

1121

1131
[I41

[151

[W
1171

WI
r191

WI
PI

WI

[231

r241

WI
WI

1271

WI

1291

D. Hare1

S. Feyock, Transition diagram-based CAI/HELP systems, Internal. _I. Man-Machine Studies 9 (1977)
399-413.
T.R.G. Green, Pictures of programs and other processes, or how to do things with lines, Behaoior
Inform. Tech. 1 (1982) 3-36.
M. Hamilton and S. Zeldin, Higher order software-A methodology for defining software, IEEE
Trans. Sofware Engrg. 2 (1976) 9-32.
D. Harel, Statecharts: A visual approach to complex systems, CS84-05, Department of Applied
Mathematics, The Weizmann Institute of Science, 1984.
D. Harel, A visual formalism and its applications, in preparation.
D. Hare1 and A. Pnueli, On the development of reactive systems, in: K.R. Apt, Ed., Logics and
Models of Concurrent Systems (Springer, New York, 1985) 477-498.
D. Hare& A. Pnueli, J.P. Schmidt and R. Sherman, On the formal semantics of statecharts, Proc.
2nd IEEE Symposium on Logic in Computer Science (1987).
C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.
.I. Hopcroft and J.D. Ullman, Zntroducrion to Automata Theory, Languages and Computation
(Addison-Wesley, Reading, MA, 1979).
M.A. Jackson, System Deuelopment (Prentice-Hall, Englewood Cliffs, NJ, 1983).
R.J.K. Jacob,‘Using formal specifications in the design of a human-computer interface, Comm
ACM 26 (1983) 259-264.
H.-A. Kahana, Master’s Thesis, Bar-Ilan University, Israel, 1986 (in Hebrew)).
J. Martin and C. McClure, Diagramming Techniques for Analysts and Programmers (Prentice-Hall,
Englewood Cliffs, NJ, 1985).
R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science (Springer,
Berlin, 1980).
D.L. Pamas, On the use of transition diagrams in the design of a user interface for an interactive
computer system, Proc ACM Conference (1969) 379-385.
A. Pnueli, The temporal logic of programs, Rot. 18th IEEE Symposium on Foundations of Computer
Science (1977) 46-57.
W. Reisig, Petri Nets: An Introduction (Springer, Berlin, 1985).
D. Ross, Structured analysis (SA): A language for communicating ideas, IEEE Trans. Software
Engrg. 3 (1977) 16-34.
R.L. Schwartz and P.M. Melliar-Smith, .Temporal logic specification of distributed systems, hoc.

2nd IEEE Znternrional Conference on Distributed Computer Systems (1981) 446-454.
C.A. Sunshine et al., Specification and verification of communication protocols in AFFIRM using
state transition models, IEEE Trans. Software Engrg. 8 (1982) 460-489.
A.S. Tanenbaum, Computer Networks (Prentice-Hall, Englewood Cliffs, NJ, 1981).

[30] P.T. Ward, The transformation schema: An extension of the data flow diagram to represent control
and timing, IEEE Trans. Software Engrg. 12 (1986) 198-210.

[31] A. Wasserman, Extending state transition diagrams for the specification of human-computer interac-
tion, IEEE Trans. Software Engrg. 11 (1985) 699-713.

[32] W.A. Woods, Transition network grammers for natural language analysis, Comm ACM 13 (1970)
591-606.

[33] P. Zave, A distributed alternative to finite-state-machine specifications, ACM Trans. Prog. Long.
Syst. 7 (1985) 10-36.

