M HSR
HOCHSCHULE FUR TECHNIK

- . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Embedded Software Engineering 2
C++ and ROMability

Prof. Reto Bonderer
HSR Hochschule fur Technik Rapperswil

reto.bonderer@hsr.ch

Mai 2020

Effective C++ in an Embedded Environment

Die meisten der folgenden Informationen stammen aus einem Seminar von Scott Meyers

© HSR Prof. R. Bonderer

Scott Meyers

Effective C++
1n an
Embedded Environment

C++ and ROMability

Anything can be burned into ROM and loaded into RAM prior to program execution.

The more interesting question is:
= What may remain in ROM as the program runs?

The C++ Standard is silent on ROMing:
= |t allows essentially anything, guarantees nothing.
= What’s ROMable is thus up to your compiler and linker.

In what follows, we discuss what is technically possible.
= Your compiler/linker probably imposes some restrictions.
= We'll discuss those first.

© HSR Prof. R. Bonderer

C++ and ROM

To understand the restrictions, we need to know what a “POD type” is.
= All C data types are POD (Plain Old Data) types.
= C++11 classes, structs, and unions are generally POD types if they lack:
= Base classes
= Virtual functions
= Non-static data members of reference type
= User-defined constructors, destructor, or assignment operators
= Non-static data members of non-POD types

Essentially, a C++11 class or struct is a POD type if it’s “laid out like C and its semantics are preserved if it’s
memcpyed.”

= But note that non-virtual member functions are allowed.
= Static data and static member functions are allowed, too.

= The definition of POD types in C++98/03 is stricter, because protected and private nonstatic data members
are precluded.

© HSR Prof. R. Bonderer

C++ and ROM (cont'd)

Common restrictions on ROMing data:

= Many compilers/linkers will ROM only statically initialized POD types.

= As we’ll see, it is technically possible for some dynamically initialized non-PODs to be ROMed.

= Some compilers/linkers will ROM structs, but not classes.
= There is no technical reason for this distinction.

= By the way: ROM is slower than RAM

© HSR Prof. R. Bonderer

C++ and ROM (cont'd)

Program instructions can always be ROMed.
Data in a C++ program can be ROMed if it meets two criteria:

= |ts value is known before runtime.
= j.e., either the compiler or the linker knows it or can compute it.

= |t can’t be modified at runtime.

© HSR Prof. R. Bonderer

C++ and ROM: Examples

static const int table[] = {1, 2, 3};

const char* pcl = "Hello World";

const char* const pc2 = "World";

© HSR Prof. R. Bonderer

//

//
//

//
//
//

table is ROMable

"Hello World" is ROMable
(but pcl is not)

"World" is ROMable (and may be
shared with "Hello World");
pc2 is also ROMable

Tl: Const types

Hidden Cost
= Global const variables in C may be allocated to SRAM and have their init value in flash.
* |n all cases, the value would normally be loaded from memory (unless the compiler can see its initial value).

= Static const scalar variables are like #define macro constants and will not be stored in memory if not needed
(address not taken, value small enough to be an immediate).

Cortex-M3

= Different compilers and optimization levels will affect how global const is treated.
= Static const is more reliable for all compilers.
* Enum constants are also a good choice (and can be used with normal ints).

© HSR Prof. R. Bonderer

C++ und ROM: int-Konstanten

= Explizit vorhandene int-Konstanten im Sourcecode sollten wegoptimiert werden. Im Normalfall ergibt eine int-
Konstante eine Immediate-Adressierung (MOVE #123, R1)

= 3 Moglichkeiten fir die Definition

= constint
- gute Moglichkeit
- wenn Adresse genommen wird, kann die Konstante nicht wegoptimiert werden
- u.U. mehrere Kopien im Code
" enum
- allerbeste Méglichkeit
- sollte ausschliesslich verwendet werden
- (negative Werte sind auch moglich)
= #define
- keine Vorteile gegeniiber anderen Methoden, vor allem nicht gegeniiber enum
- kein Scope
- koénnen nicht private oder protected sein

© HSR Prof. R. Bonderer

C++ und ROM: double-Konstanten

» double-Konstanten kénnen kaum wegoptimiert werden (Immediate-Adressierung geht normalerweise nicht)
= Ausnahme: bei 64 Bit-Systemen kann es gehen oder bei guter FPU

= 2 Moglichkeiten fir die Definition
= const double
- gute Moglichkeit
= Hdefine
- Makroproblematik
- private, protected nicht moglich
- haufig mehrere Kopien dieser Konstanten im Code

© HSR Prof. R. Bonderer

C++ and ROM: Objects

= Objects may be ROMed if the following are true:
= They are declared const at their point of definition.
= They contain no mutable data members.

= They are initialized with values known during compilation.
- Such “knowledge” might come from dataflow analysis, etc.

struct Point

{
int x;
int y;
}s5

const Point origin = {0, 0}; // origin is ROMable

© HSR Prof. R. Bonderer

C++ and ROM: Compiler Generated Data

Some compiler generated data structures can usually be ROMed:
= Virtual function tables

= RTTI tables and type_info objects

= Tables supporting exception handling

ROMing these objects may be impossible if they are dynamically linked from shared libraries.

© HSR Prof. R. Bonderer

Summary: C++ and ROM

» Most compilers/linkers are willing to ROM statically initialized POD types.
= Aggressive build chains may go beyond this.

= ROMable PODs can be encapsulated by making them protected or private in a non-POD type.

= Compiler-generated data structures are typically ROMable.

© HSR Prof. R. Bonderer

